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Abstract: Glioblastoma multiforme (GBM) is characterized by poor prognosis despite an
aggressive therapeutic strategy. In recent years, many advances have been achieved in the

Here we try to summarize the main clinical and biological factors impacting clinical prog-
nostication and therapy of GBM patients. From that standpoint, hopefully, in the near future,
personalized therapies will be available.
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1. INTRODUCTION

Glioblastoma multiforme (GBM) is the most com-
mon histological form of a primary malignant brain
tumor in adults. It accounts for approximately 60—70%
of gliomas and 15% of primary brain tumors.

The incidence peak normally occurs in individuals
aged 65 years or more, and its incidence has substan-
tially increased in recent years [1].

GBM is characterized by the ability to infiltrate sur-
rounding normal brain parenchyma and by a tendency
to recur after gross total resection. That being so, the
prognosis of these patients is extremely poor, of just
12-15 months following standard therapy, with only 3-
5% of patients surviving up to 5 years after diagnosis

[2].
To date, gliomas are classified largely based on
their histopathological characteristics.
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GBM is characterized by uncontrolled cellular pro-
liferation, robust angiogenesis, intense resistance to
apoptosis, diffuse infiltration, propensity for necrosis
and genomic instability [3].

However, GBM exhibits a high degree of intra- and
inter-tumor heterogeneity both at the cellular and mo-
lecular level, despite similar tumor morphology, that
might explain why the clinical course of these patients
is heterogeneous and why it is very hard, today, to pro-
vide a prognosis in individual patients.

Classical prognostic factors include age at diagnosis
(longer survival for young patients <50 years), Karnof-
sky Performance Score (higher status of at least 70
points correlates with an improved outcome) and tumor
size and location (eloquent areas of the brain carry bet-
ter prospects) [4].

However, it is essential to elucidate the genetic and
molecular mechanisms underlying these tumors to ob-
tain new robust molecular prognostic factors and effec-
tive treatments.
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The aim of this article is to review new prognostic
and predictive biomarkers of GBM and discuss their
implications for clinical practice.

2. PRIMARY AND SECONDARY GLIOBLAS-
TOMA

“From a biologic and clinical point of view, the sec-
ondary glioblastomas developing in astrocytomas must
be distinguished from “primary” glioblastomas. They
are probably “responsible for most of the glioblastomas
of long clinical duration” [5]. Those were the words
that Scherer, in 1940, used to describe two entities of
GBMs, for the first time.

But only decades later, after the introduction of im-
munohistochemistry, the characterization of GBM was
unequivocally established.

Traditionally, GBM is distinguished as primary and
secondary.

Primary GBM are defined as presenting without a
known clinical precursor, instead, secondary GBMs as
a lesion aroused from lower-grade lesions.

Clinically, they develop two tumor forms with dif-
ferent epidemiology and prognosis.

Primary GBMs occur mostly in the elderly popula-
tion, whereas secondary GBMs are more common in
the relatively younger middle-aged population and they
are associated with a longer clinical history (16.8 ver-
sus 6.3 months) and a better prognosis in terms of sur-
vival (7.8 versus 4.7 months) [6].

Unfortunately, these two forms are histologically
largely indistinguishable, but it is demonstrated that
they constitute two distinct disease entities, which de-
velop through the acquisition of different genetic al-
terations [7], indicating distinct molecular signatures.

Primary GBM is remarkable for loss of heterozy-
gosity (LOH) of 10q (70%), epidermal growth factor
receptor (EGFR) amplification (36%), PTEN mutation
(25%) and CDKN2A-p16™*** deletion (31-78%) [6].

Secondary GBM most frequently demonstrates a
mutation of the TP53 tumor suppressor gene (65%) and
O6-methylguanine DNA methyltransferase (MGMT)
promoter methylation (75%).

This differentiation is important for patient’s prog-
nosis and is correlated to traditional prognostic factors,
since secondary GBM as well younger age at diagnosis
or presence of MGMT promoting methylation are pre-
dictive factors having a better prognosis.
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A biologic explanation for this clinical categoriza-
tion is given by mutations of genes encoding isocitrate
dehydrogenase (IDH1 and IDH2). Since the mutational
profiles of these metabolic enzymes are present in the
vast majority of WHO grade II or III gliomas and in the
secondary glioblastomas that develop from these pre-
cursors [8], IDHI and 2 mutations can be used as mo-
lecular markers of secondary glioblastoma.

The identification of these molecular signatures has
begun to introduce new concepts in tumor classifica-
tion. The World Health Organization (WHO) incorpo-
rated IDH mutation and 1p/19q co-deletion into an “in-
tegrated diagnosis” in the 2016 revised 4th edition of
the classification of tumors of the central nervous sys-
tem [9].

3. CLINICAL PROGNOSTIC FACTORS
3.1. Age of Patient

Age at diagnosis is considered an important predic-
tive factor. Indeed, secondary GBM most commonly
affects younger patients prior to the age of 50 years and
it has a better prognosis [6]. Besides this group, , the
majority of patients are individuals aged 62 years or
more. In these patients, age is a controversial predictive
factor, because it is not so clear if different survival is
related to a different biology of GBM in the elderly or
to a nihilistic approach arising from the incorrect opin-
ion that chronological age is a real limit to cancer
treatment [10].

A SEER (Surveillance Epidemiology and End Re-
sults) study [11] demonstrated that only 65% of indi-
viduals aged more than 65 years with GBM received
adjuvant radiotherapy, to confirm the tendency to un-
dertreat elderly patient.

It is necessary to go beyond chronological age and
obtain a stratification of patients with biological age

(Fig. 1) [12].
3.2. Performance Status

Performance status (PS) -according to the Eastern
Cooperative Oncology Group (ECOG) or Karnofsky is
the marker with the greatest relevance.

Standard GBM treatment has been shown to be ef-
fective for patients with a good functional status [13].
Patients with low performance score have low median
survival and so the benefit of therapeutic interventions,
surgery, radiotherapy, and chemotherapy, can be not
useful.
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The majority of current studies exclude patients
with a KPS score below 70, and so randomized con-
trolled trials.

A better neurological status at diagnosis has been
associated with longer survival [14]. Furthermore, it
has been demonstrated that the absence of a major neu-
rological deficit prior to surgery is associated with a
better prognosis (Fig. 1) [15].

Fig. (1). Clinical prognostic factors in GBM.

3.3. Surgery

Surgical resection is an important part of the treat-
ment strategy for primary glioblastoma in adults with
an adequate performance status regardless of patient
age. Surgery reduces 1-year relative risk of dying by
about 45% and the risk of progression by about 37%
[16].

Noorbakhsh et al. conducted a Surveillance, Epide-
miology, and End Results (SEER)-based analysis of
20,705 adult patients with GBM, and the results indi-
cated that resection of the gross tumor is associated
with improved survival, even in elderly patients [17].
Obviously, if gross tumor removal was obtained, then
patients had higher KPS scores. Furthermore, a residual
tumor volume was a more accurate and meaningful
predictor of survival, especially in those patients with
larger preoperative tumor size [18].
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However, data from hospitals with a high volume of
GBM patients indicate how surgical resections do not
seem to be a prognostic factor (Fig. 1) [19].

3.4. Imaging Prognostic Factors

Magnetic resonance imaging (MRI) is routinely
used for initial diagnosis and monitoring of treatment
response in patients with GBM [20].

Some investigators attempted to identify MRI char-
acteristics of GBMs that correlate with patient out-
come. Preoperative tumor volume, the extent of edema,
the degree of necrosis, and the degree of contrast en-
hancement are statistically significant prognostic indi-
cators [21-23].

Histologically similar tumors often demonstrate
highly distinct imaging profiles on MRI [24].

The degrees of contrasted area, edema surrounding
the tumor, and intensity in T2-weighted imaging were
correlated with the survival of patients with GBM [22].

Diehn et al. also demonstrated that with MRI, it is
possible to obtain a radiophenotype, and activation of
specific gene-expression programs can be inferred from
imaging traits, thus providing insights into tumor biol-
ogy on a tumor-by-tumor basis (Fig. 1) [25].

A recent study analyzing CT perfusion parameters
showed that these data were predictive of survival and
could be useful in assessing early response and in se-
lecting an adjuvant treatment to prolong survival [26].

Furthermore, imaging obtained with PET with ra-
diolabelled amino acids: methionine (11C-METH), has
proven to be a valuable tool for the characterization of
primary brain tumours [27].

High METH uptake had a worse outcome than pa-
tients with low MET uptake (Fig. 1) [28].

4. BIOLOGICAL PROGNOSTIC FACTORS
4.1. Methylguanine-DNA Methyl Transferase

O6-methylguanine-DNA methyltransferase is a cel-
lular DNA-repair protein, a key repair enzyme that rap-
idly reverses alkylation at the O6 position of guanine.

Epigenetic silencing MGMT gene by promoter
methylation, results in decreased MGMT expression.

It is found in approximately 40 % of primary GBM
patients [29]. Hegi et al. [30] reported a correlation
between MGMT methylation and longer survival of
patients treated for GBM with radiotherapy and con-
comitant TMZ.
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Silencing of the MGMT protein by promoter methy-
lation may suppress this repair mechanism, conse-
quently increasing cytotoxicity of chemotherapy and
radiotherapy.

Low levels of MGMT protein are associated with a
higher therapeutic effect of TMZ and longer OS in
GBM patients [31, 32]

A meta-analysis evaluated the prognostic impacts of
MGMT promoter methylation on both OS and progres-
sion-free survival (PFS) in GBM patients, suggesting
its value as a predictive biomarker in GBM cases (Fig.
2) [33].

- IDH1/IDH2 mutations

- co-deletion of chromosome
arms 1p & 19q

- miRNAs

- MGMT
- RTK signaling mutation/amplification
- STAT3
- Ras signaling pathway
- NF1

- co-deletion of chromosome arms 1p
& 19q

- miRNAs
- inflammation

Fig. (2). Biological prognostic factors in GBM.

4.2. RTK Signaling Mutation/Amplification

Mutations or amplifications of receptor tyrosine
kinase (RTK) signaling including EGFR, PDGFRA,
basic fibroblast growth factor receptor 1 (FGFR-1), and
insulin-like growth factor receptor (IGFR-1) are pre-
sent in more than 80% of primary GBM (Fig. 2) [34].

4.2.1. EGFR

EGFR amplification is observed in about 40% of
primary glioblastomas and is very rare in secondary
GBMs. Approximately 50% of these EGFR amplifica-
tions harbor a mutation in this gene that codes for EG-
FRvVIII, an active variant of EGFR that is supposed to
promote tumor growth and is potentially associated
with a worse clinical outcome [35].

The role of EGFR amplification, as a prognostic
biomarker, is not so clear. In fact, clinical studies have
conflicting results. Reports show no association with
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overall survival in patients, instead, others show a
negative impact, and some even indicate a favorable
impact on patient survival.

4.2.2. PDGFR

Nearly 30% of human gliomas show expression pat-
terns that are correlated with PDGFR signalling [36].
Amplification of PDGFR seems to promote aggressive
glioma growth [29]. PDGF expression leads to tumor
formation through both autocrine and paracrine signal-
ing mechanisms, driving the evolution of heterogene-
ous malignant gliomas [37].

4.2.3. IGFR

Human epidemiological studies suggest that the IGF
system is implicated in the development of malignan-
cies, including GBM [38]. Approximately 20% of the
GBMs showed positivity for the IGF ligands (IGF re-
ceptors) [39]. IGF-IR expression has a prognostic
value, being negatively associated with cancer-specific
survival in GBM [39, 40].

4.2.4. FGFR

FGF signaling has been considered as a pro-
oncogenic pathway in GBM cells, and is crucial for the
proliferation and survival of GBM cells [41]. FGFR1
expression levels have been shown to be a poor predic-
tive marker of overall survival and time to progression
in patients treated with chemo-radiotherapy in glioblas-
toma.

5. ISOCITRATE DEHYDROGENASE 1 AND 2
(IDH1/IDH2) MUTATIONS

Isocitrate dehydrogenase (IDH) is an enzyme that
catalyzes the oxidative decarboxylation of isocitrate
and produces o -ketoglutarate. Approximately 70% to
80% of secondary glioblastomas have somatic mutation
in the isocitrate dehydrogenase 1 (IDH1) gene, which
are rare in primary GBMs [42].

Mutations in IDH1 are proposed as an early event
during glioma tumorigenesis, occurring preferentially
in younger patients [8]. IDH1/2 mutations cause both
loss of function and gain of function of the enzyme, so
there is not the degradation of hypoxia-inducible factor
la (HIF-1a) by a -ketoglutarate -dependent prolylhy-
droxylases. HIF-1a is an important transcription factor
involved in crucial aspects of cancer biology, including
angiogenesis, cell survival, glucose metabolism and
invasion [43].

A meta-analysis examining the association of iso-
citrate dehydrogenase (IDH)1/2 mutations with overall
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survival (OS) and progression-free survival (PFS) in
patients with glioblastomas, showed that the presence
of IDH1/2 mutations is associated with longer OS and
PFS. This result was seen in both patients treated with
surgery and those treated nonsurgically (e.g. radiother-
apy), as well as in patients with IDH1 and IDH1/2 mu-
tations (Fig. 2) [44, 45].

6. STAT3

STAT3 is a member of the STAT (Signal Transduc-
ers and Activators of Transcription) family of tran-
scription factors [46]. It is known that transcription fac-
tor STAT3 plays a central role in neural stem cell and
astrocyte development [47].

Recent studies have uncovered that STAT3 plays
distinct and opposing tumor suppressive and oncogenic
roles in glioblastoma tumor pathogenesis depending on
the genetics of PTEN and EGFRVIII status of the tumor
[48]. STATS3 plays a critical tumor-suppressive role in
PTEN-deficient human glioblastoma and IL8 is
upregulated in PTEN-deficient human, in EGFRvIII-
expressing cells. Instead, STAT3 promotes the survival
of GBM cells (Fig. 2) [49, 50].

7. RAS SIGNALING PATHWAY

The Ras signaling pathway is critical in the malig-
nant phenotype of glioblastoma and has e been shown
to govern proliferation and survival [51], invasiveness,
and radiation resistance [52].

Ras gene mutations have not been found in the
glioblastoma, hence Ras protein seems to be activated
by the stimulation of surface receptors and other ab-
normal signaling events [53].

Activated intermediates of the Akt pathway and
MAPK are associated with decreased overall survival
in glioblastoma. Furthermore, it is probable that high
expression of p-MAPK is associated with increased
tumor resistance to radiotherapy in patients with
glioblastoma (Fig. 2) [51, 54].

8. NEUROFIBROMATOSIS TYPE 1

Neurofibromatosis type 1 (NF1) is a genetic tumor-
predisposing syndrome caused by germline mutations
in the NF1 gene [55]. NF1 loss generally leads to in-
creased activity in a variety of pro-tumorigenic path-
ways, particularly the mitogen-activated protein kinase
pathway [56]. NF1 loss was associated with worse sur-
vival in GBMs (Fig. 2) [56, 57].
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9. CO-DELETION OF CHROMOSOME ARMS 1P
& 19Q

Complete 1p/19q co-deletion is interconnected with
better therapeutic sensitivity to chemotherapy [58] and
radiotherapy [59] in patients with anaplastic oligoden-
droglioma. Results of the study with GBM are conflict-
ing. Complete 1p/19q co-deletion is associated, for
some author, with longer survival; for others, with a
shortened survival (Fig. 2) [60, 61].

10. mIRNA

Different studies confirmed that also small non-
coding RNA molecules (miRNAs) have key roles in
various pathogenic events in glioblastoma. MiRNAs
could represent putative target molecules, considering
their role in tumorigenesis, cancer progression and their
specific tissue expression [62].

For example, miR-24 and miR-21 are highly ex-
pressed in GBMs favoring invasion and proliferation
[63, 64]. Furthermore, upregulated miRNAs such as
miRNA-326 and miRNA-130a, and down-regulated
miRNAs such as miRNA-323, miRNA-329, miRNA-
155 and miRNA-210 were associated with a long overall
survival in GBM patients and could serve as prognostic
and predictive markers for survival (Fig. 2) [65, 66].

11. INFLAMMATION AS
FACTOR

PROGNOSTIC

Mounting evidence suggests an important role for
inflammation in the pathogenesis and progression of
cancer. The development of an inflammatory microen-
vironment has long been considered important in the
initiation and progression of glioblastoma (Fig. 2) [67].

A panel of cytokines and angiogenic factors, whose
levels were significantly higher and strongly correlated
with clinical aggressiveness in GBMs was found. In-
flammatory cells and cytokines present in GBM are
more likely to contribute to tumour growth, progres-
sion, and immunosuppression, rather than in building
an effective antitumour defence [68]. IL-1 is a major
neuroinflammatory cytokine in the brain that is re-
leased in response to injury or a growing tumor [69].
Moreover, IL-1 regulates survival and invasiveness of
glioblastoma cells, increases Sphingosine kinases
(SphK1) activity and intracellular concentration of
S1P, a potent lipid mediator of various cell processes,
including cell proliferation, differentiation, survival,
and migration [70].
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I1-6 and IL-8 are related to the expansion of GBM,
IL-6 mitogenic for tumour cells. IL-8 amplifies the in-
flammatory microenvironment and also has chemotac-
tic and angiogenic properties [71].

Instead, anti-inflammatory cytokines IL-4 and IL-12
appear at a lower level. IL-4 is involved in the inhibi-
tion of cell proliferation, regulation of adhesion mole-
cules, and induction JAK/STAT signalling, IL-12 is a
powerful anticancer factor, which can inhibit the
growth of implanted glioblastoma and the increase in
survival time [68]. Furthermore, serum levels of angio-
genic factors were considerably elevated in glioblas-
toma patients, while VEGF and bFGF were signifi-
cantly overexpressed [68].
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VEGF-VEGFR?2 signalling is maintained by con-
tinuous secretion of VEGF ligand and promotes tumour
growth, invasiveness and enhanced resistance to some
treatments [72].

The same presence of systemic inflammation is a
predictor of outcomes in various types of malignancies
including GBM. Neutrophil-to-lymphocyte ratio (NLR)
and PLRs (platelet-to-lymphocyte ratio) are two emerg-
ing markers of systemic inflammatory response easily
calculated from routine complete blood counts (CBCs)
in peripheral blood.

NLR and PLR reveal an imbalance between tumori-
genic inflammatory processes and anti-tumor cellular
immunity. An elevated neutrophil count could promote

Table 1. Prognostic and predictive response therapy factors in GBM.

Biological Prognostic Factors

Positive

Negative

Methylguanine-DNA Methyl transferase.

Silencing of the MGMT protein (promoter
methylation) may suppress repair mechanism,
and increase cytotoxicity of CT and RT.

RTK signaling mutation/amplification

EGFR

Amplification promotes tumor
growth and is potentially associated
with a worse clinical outcome.

PDGFR

Amplification seems to promote
aggressive glioma growth.

IGFR

IGF-IR expression has a prognostic
value, being negatively associated
with cancer-specific survival.

FGFR

FGFR1 expression levels have been
shown to be a poor predictive
marker of overall survival.

Isocitrate Dehydrogenase 1 and 2
(IDH1/IDH2) mutations.

presence of IDH1/2 mutations is associated
with longer OS and PFS.

STAT3

tumor suppressive role in PTEN-deficient hu-
man glioblastoma.

EGFRvlIlI-expressing cells, instead,
STATS3 promotes the survival of
GBM cells.

Ras signaling pathway.

Activated intermediates of the Akt
pathway and MAPK are associated
with decreased overall survival.
High expression of p-MAPK is
associated with increased tumor
resistance to radiotherapy.

Neurofibromatosis type 1.

loss was associated with worse sur-
vival.

Co-deletion of Chromosome Arms 1p & 19q.

Complete 1p/19q co-deletion is associated, for
some author, with longer survival.

miRNA

miR-24 and miR-21 are highly expressed in
GBMs favoring invasion and proliferation.

upregulated miRNAs such as
miRNA-326 and miRNA-130a were
associated with long overall sur-
vival.
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tumor growth and metastasis by remodeling the ex-
tracellular matrix, releasing reactive oxygen species,
and suppressing lymphocyte activity [73]. An elevated
platelet count recruited to the tumor microenvironment
interacts directly with tumor cells, favoring their prolif-
eration, and, indirectly, through the release of a wide
palette of growth factors, including angiogenic and mi-
togenic proteins [74]. A high NLR and PLR were
found to be closely associated with a poor prognosis
GBMs [70, 75-77].

Furthermore, it is extremely important to understand
the interaction of glioblastomas with surrounding stro-
mal cells. A transmembrane receptor ligand, program
death-ligand 1 (PDL-1) is demonstrated to have a nega-
tive regulator of T-cell signaling. Liu ef al. evaluated
PD-L1 expression in surgically resected tumors from
GBM patients. In a subgroup of GBM patients, PD-L1
was highly expressed in tumor-adjacent brain tissue; in
another group, PD-L1 was highly expressed in tumor
cells.

The authors found that the first group (tumor-
adjacent brain tissue with PD-L1) was significantly
associated with a favorable prognosis. Instead, GBM
patient subgroup, with PD-L1 expression in tumor
cells, was associated with poor prognosis [78]. A regu-
latory pathway between PD-L1 expression in brain
neurons and in tumor cells was conceivable, where an
upregulation of PD-L1 expression in tumor cells al-
lowed tumor cells to evade immune surveillance and
correlate with GBM aggressiveness [78].

CONCLUSION

Recent studies have provided a biological basis to
GBM. This new knowledge is very important to obtain
biomarkers as prognostic and predictive response ther-
apy factors and to develop new therapeutic opportuni-
ties, resumed in Table 1.

As a prognostic value, histology-based diagnosis
must be assisted by molecular diagnostic tests to allow
biological classification and improve patient stratifica-
tion. It is important to obtain more information by ra-
diological imaging in order to obtain information on
the complexity and heterogeneity of GBM.

As a predictive value, today it is not so clear how
the biology of tumor is affected by biological factors.

A hypothesis concerns IDH mutations: the increased
sensitivity of these GBM cells to chemotherapy and
radiotherapy can be explained by a reduction of capac-
ity of these GBM cells to produce nicotinamide ade-
nine dinucleotide phosphate (NADPH) and conse-
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quently to lower the ability to scavenge oxygen spe-
cies, making the tumor cells more susceptible to irra-
diation and chemotherapy [79].

miRNAs were found to affect the tumor response to
radiotherapy. Globally, miR-26a, miR-124, miR-128,
miR-145, miR-153, miR-181a/b, miR-203, miR-
221/222, miR223, miR-224, miR-320, and miR-590-3p
increase the radiosensitivity of GBM cells, while miR-
21, miR-210, miR-212, and miR-135b decrease it [80].

The choice of the best assumption to apply in each
GBM case is not an easy one and results must be
evaluated by clinical data.

CLINICAL PRACTICE POINTS

e Primary GBM is remarkable for LOH of 10q
(70%), epidermal growth factor receptor (EGFR)
amplification (36%), PTEN mutation (25%) and
CDKN2A-p16™“4* deletion (31-78%).

e Secondary GBM most frequently demonstrates
mutation of the TP53 tumor suppressor gene
(65%) and MGMT promoter methylation (75%).

e Clinical prognostic factors are: biological age,
ECOG PS, surgery and imaging factors (MRI,
PET with 11C-METH).

e Biological prognostic factors are: MGMT, RTK
signaling mutation/amplification (EGFR,
PDGFRA, FGFR-1 and IGFR-1), IDHI1/IDH2
mutations, STAT3, Ras signaling pathway, NF1,
co-deletion of chromosome arms 1p & 19q, miR-
NAs and inflammation.
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