
Rev Physiol Biochem Pharmacol
https://doi.org/10.1007/112_2020_43
© The Author(s), under exclusive licence to Springer
Nature Switzerland AG 2020

Cancer-Related Increases and Decreases
in Calcium Signaling at the Endoplasmic
Reticulum-Mitochondria Interface (MAMs)

Alberto Danese, Saverio Marchi, Veronica Angela Maria Vitto,
Lorenzo Modesti, Sara Leo, Mariusz R. Wieckowski, Carlotta Giorgi, and
Paolo Pinton

Contents

1 Introduction
2 MAM-Localized Ca2+ Signaling Modulators in Cancer: Channels and Receptors

2.1 ER Side
2.2 Mitochondrial Side

3 Decrease in ER-Mitochondria Ca2+ Crosstalk
3.1 Dysfunctional ER-Ca2+ Release
3.2 Perturbed Mitochondrial Ca2+ Uptake

4 Upregulation of ER-Mitochondria Ca2+ Crosstalk
4.1 New Insights into Ca2+ Signaling Perturbation in the MAMs
4.2 Increased ER-Ca2+ Release
4.3 Increased Mitochondrial Ca2+ Uptake

5 Conclusions
References

Abstract Endoplasmic reticulum (ER)-mitochondria regions are specialized
subdomains called also mitochondria-associated membranes (MAMs). MAMs
allow regulation of lipid synthesis and represent hubs for ion and metabolite
signaling. As these two organelles can module both the amplitude and the
spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls
several Ca2+-dependent pathways well known for their contribution to
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tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis.
Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload,
permeabilization of the mitochondrial outer membrane, and the release of
mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the
ER-mitochondria interface are being studied in depth as failure of apoptotic-
dependent cell death is one of the predominant characteristics of cancer cells.
However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation
to tumor onset and progression have aroused the interest of the scientific community.

In this review, we will describe how different MAMs-localized proteins modulate
the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and
decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+

signaling.

Keywords Calcium · Calcium signaling · Cancer · Downregulation · MAMs ·
Upregulation

1 Introduction

Ca2+ is the third most abundant metal in nature, and it was adopted as a regulator in
the early evolutionary stages in prokaryotes (Cai et al. 2015). Ca2+ ions play a crucial
role in countless biological processes, and one of their most important contributions
is undoubtedly represented by Ca2+ signaling, a complex network of extra- and
intracellular messenger systems that mediates a wide range of pathways (Rimessi
et al. 2020). The characterization of the complex network involving Ca2+ signaling
has been in progress for approximately 140 years since the first experiments
examining the contraction of isolated rat hearts (Ringer 1883). Since then, extensive
progress has been made in understanding the numerous molecular pathways
involved, although many aspects are still being debated and still need to be defined.
Evolutionarily, cells have developed systems to constantly maintain Ca2+

concentrations at very low background levels to avoid the precipitation of phosphate
salts, making this ion the logical choice for the exchange of signals (Carafoli and
Krebs 2016). The crucial role of Ca2+ in cell biology results from the ability of cells
to shape Ca2+ signals in the dimensions of space, time, and amplitude (Alonso et al.
2009).

Ca2+ enters cells through an assortment of Ca2+-permeable channels that respond
to different stimuli or acts as a second messenger, e.g., in the phosphoinositol
signaling pathway, in which inositol trisphosphate (IP3) binds to Ca2+ channels on
the endoplasmic reticulum (ER), transporting Ca2+ into the cytoplasm. Once in the
cell, the effects of Ca2+ can be mediated by direct binding to its effectors, such as the
phosphatase calcineurin, or indirectly by activating the ubiquitous Ca2+-binding
protein calmodulin, leading to the regulation of target molecules such as the Ca2+/
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calmodulin-dependent kinases CaMKII and CaMKIV (Kerkhofs et al. 2017).
Temporally and spatially defined Ca2+ changes in the cytoplasm or in well-defined
organelles represent a highly versatile intracellular signal capable of regulating many
different processes, including depolarization, hormonal secretion, contraction of
smooth and striated muscles, and cellular replication and activation of cytoplasmic,
mitochondrial, and nuclear enzymes (Giorgi et al. 2018a).

Proteins that participate in Ca2+ signaling are mostly ubiquitous, but their
distribution is highly tissue-specific (Berridge et al. 2003). Cells that need rapid
Ca2+ signals, such as myocytes, express many voltage-activated calcium channels to
allow quick Ca2+ entry through the plasma membrane, which then, via ryanodine
receptors (RyRs) on the sarcoplasmic reticulum, triggers further calcium release.
However, nonexcitable cells display calcium oscillations that last for tens of seconds
and preferentially use the phosphoinositol signaling pathway to control gene
expression and metabolism (Cui et al. 2017).

Therefore, a lack of Ca2+ ions can lead to various issues, and excess Ca2+ ions
have harmful effects. Indeed, a sustained rise in intracellular Ca2+ is considered the
initial step of irreversible cellular injury, mediated by the activation of the
intracellular self-destructive lysosomal enzymes responsible for breakdown of
subcellular organelle membranes and increases in oxidative stress and for the
hyperactivation of phospholipases and endonucleases, which, through DNA
damage, participate in apoptosis (Danese et al. 2017). Intracellular Ca2+ signals are
controlled by Ca2+ influx through the plasma membrane (PM) and Ca2+ release from
intracellular stores, mainly the ER and Golgi. Intracellular Ca2+ stores are constantly
refilled while cytosolic Ca2+ is extruded from the cell by the plasma membrane Ca2+

ATPase (PMCA) pump, to maintain the optimal cytosolic Ca2+ concentration
(Marchi et al. 2018).

In the cell, one of the organelles in which changes in [Ca2+] are particularly
important is the mitochondrion (Giorgi et al. 2018b), which decodes Ca2+ signals in
very sensitive and specific inputs that regulate metabolism, energy production,
autophagy, and apoptosis (Giorgi et al. 2018a).

Membrane juxtaposition of both the mitochondria and the ER leads to the highly
specialized MAMs compartment, which can be defined as areas of close organelle
apposition but that are biochemically distinct from pure mitochondria and pure ER
(Morciano et al. 2018). These contact sites are part of abundant heterotypic contacts,
which, especially in recent years, have been well characterized and which include the
ER-plasma membrane, ER-Golgi, lipid droplets–peroxisomes, mitochondria-lipid
droplets, mitochondria–vacuoles/endosomes/lysosomes, ER-lipid droplets,
mitochondria-plasma membrane, mitochondria–peroxisomes, ER-lipid droplets,
and mitochondrial inner and outer membranes (Eisenberg-Bord et al. 2016).

To witness the strong tethering between the ER and mitochondria, an isolated
MAM fraction contains membrane fragments of the outer mitochondrial membrane,
the ER, and some plasma membrane proteins (Poston et al. 2013). Tomography
analysis has revealed the morphology of these ER-mitochondria-connecting tethers
(Csordas et al. 2006). The maintenance of this delicate structural juxtaposition
results strategic for the regulation of a huge number of biological processes,
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essentially through Ca2+ exchange. Poston et al. reported that there are around 1,000
molecular components of the MAMs fraction (Poston et al. 2013) and their study led
to an elucidation of the multiple roles played by this particular subcellular
compartment. In particular, MAMs co-regulate and influence Ca2+ signaling/
dynamics, synthesis/transport of lipids and lipid intermediates, autophagy,
apoptosis, and energy metabolism.

Noteworthy is the fact that MAM structures are sensitive to physiological cell
conditions and this reflects in a transient and highly variable MAM composition. The
length of ER-mitochondria tethers is a determining factor, critical for an efficient
Ca2+ transfer, and an ER-mitochondria physical distance modulation is a condition
found in different pathophysiological situations. About that, these two organelles’
interplay is also involved in mitochondrial shape and size, and MAM-regulated
mitochondrial fusion/fission process undoubtedly covers a crucial role in governing
mitochondrial dynamics. Dynamin-related protein 1 (Drp1) is responsible for
mitochondrial fission; following its activation, Drp1 translocates from the cytosol
to the mitochondria and oligomerizes and constricts this organelle until its division is
achieved. Focusing on mitochondrial fusion, mitofusin 1 (Mfn1) and mitofusin
2 (Mfn2) are responsible for the outer membrane fusion, while optic atrophy
1 (Opa1) mediates mitochondrial inner membrane fusion (Ponte et al. 2020).

MAMs are enriched in channels involved in calcium transfer, allowing perfect
and synergistic signaling between the ER and mitochondria. Moreover, MAMs
target many proteins with oncogenic/oncosuppressive functions that modulate cell
signaling pathways involved in physiopathological processes (Danese et al. 2017).

As Ca2+ signaling-governed processes (such as energy production, metabolism,
autophagy, and apoptosis) are dysregulated in cancer cells and play a key role in
Ca2+ transfer and signaling in MAMs, the perturbation of these Ca2+ transport
systems at the ER and the mitochondria in relation to tumor onset and progression
has become a very hot topic, especially in recent times. In fact, the recent
characterization of the many oncogenes and tumor suppressors residing at the
MAMs has led many research groups to elucidate how these proteins mediate their
functions by altering ER-mitochondrial Ca2+ transfer, thereby promoting or
preventing cancer cell survival. Increases or decreases in calcium exchange through
the MAMs interface can either exert protumorigenic effects (such as promoting
metastatic transformations) or antitumorigenic effects (such as restoring sensitivity
to apoptosis) in a cancer type- and cancer state-specific manner (Kerkhofs et al.
2018).

The aim of this review is to clarify how the perturbation of Ca2+ signaling at the
ER-mitochondria interface can play a double-sided role in tumor pathology and
progression. Modulation of calcium signaling at the MAMs, highly dynamic
signaling hubs, could therefore represent a good therapeutic strategy in the future.
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2 MAM-Localized Ca2+ Signaling Modulators in Cancer:
Channels and Receptors

Ca2+ signaling represents an important tool that regulates many physiological
cellular events from proliferation to cell death. Given the pivotal role it plays in
such events, it is understandable why, over the past decades, remodeling of its shape
has been demonstrated to be involved in the onset of many pathological conditions,
such as tumor progression (Monteith et al. 2012; Prevarskaya et al. 2014; Marchi
et al. 2020). Proteins involved in the maintenance of Ca2+ homeostasis consist of
pumps, exchangers, and channels and have been described as part of the Ca2+

signaling “toolkit” (Berridge et al. 2003).
In resting conditions, the free cytosolic Ca2+ concentration is much lower than

that in most extracellular fluids, and an ion concentration gradient is generated. Thus,
when Ca2+-permeable ion channels in the plasma membrane are open, Ca2+ flux into
the cell increases (Carafoli 2002). However, as already mentioned, Ca2+ signaling
can be generated by both external and internal cellular sources.

In the cell, the main ion reservoir from which Ca2+ can be transferred is the
endoplasmic reticulum. On the one hand, the ER is the primary cell Ca2+ store; on
the other hand, the main cellular Ca2+ signaling translators are the mitochondria.

Indeed, depletion of luminal ER Ca2+ levels is followed by a rapid increase in ion
mitochondrial concentration. To ensure this interaction is effective, the ER and the
mitochondria are juxtaposed on the MAMs at a short distance of approximately
10–25 nm (Csordas et al. 2006; Rizzuto et al. 1998; Marchi et al. 2014) in the smooth
ER and at approximately 50 nm in the rough ER (Wang et al. 2015; Giacomello and
Pellegrini 2016).

2.1 ER Side

Many ER-resident proteins involved in Ca2+ transfer have been found at the MAMs:
the sarco-/endoplasmic reticulum Ca2+ ATPase (SERCA) and inositol 1,4,5-
trisphosphate receptors (IP3R), among others. SERCAs are members of the P-type
ATPase superfamily of primary active transporters (a large family of membrane-
embedded pumps (Wang et al. 2015)) and can maintain the correct cytosolic and
reticular Ca2+ concentrations.

The 110 kDa SERCA protein has 10 helix intramembrane domains involved in
the interaction with two Ca2+ ions transferred to the ER lumen at the expense of
adenosine triphosphate (ATP). The Ca2+ flux is coupled to the exchange of two to
three protons moved to the cytoplasm (Palmgren and Nissen 2011). In addition to
transmembrane domains, SERCA has three cytoplasmic regions: the nucleotide-
binding domain (N), designed for ATP binding; the phosphorylation (P) domain,
which hosts the amino acid residue phosphorylated by ATP; and the actuator
(A) domain at the N-terminus, which controls enzyme dephosphorylation. During
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ATP hydrolysis, conformational changes in the protein domains occur, and as
consequence, the intermembrane domains warp, enabling Ca2+ transport
(Toyoshima et al. 2000; Moller et al. 2010).

To date, at least 12 isoforms of SERCA (SERCA1a-b, SERCA2a-d, SERCA3a-f)
have been identified in vertebrates (Lipskaia et al. 2014), each characterized by
tissue and developmental specificity. This diversity is because SERCAs are encoded
by three different genes located on three chromosomes (ATP2A1, ATP2A2, and
ATP2A3), each generating alternative splicing variants that differ mainly in the
C-terminus of the protein.

The diversities in the coding sequencing of these proteins do not affect the protein
tertiary structures, which are highly conserved among all isoforms, but instead lead
to differences in Ca2+ affinity. Among all these proteins, ubiquitous SERCA2b is the
isoform with the highest Ca2+ affinity and plays a crucial role in the regulation of ER
Ca2+ uptake and Ca2+ homeostasis (Vandecaetsbeek et al. 2009). All SERCA
isoforms are present along the entire ER membrane and are not particularly enriched
in MAMs.

SERCA activity can be modulated by many proteins. Among them, the recently
identified ER-luminal protein disulfide isomerase thioredoxin-related
transmembrane protein 1 (TMX1) displays palmitoylation-dependent MAMs
localization. TMX1 can directly interact with SERCA2b (Gutierrez and Simmen
2018; Lynes et al. 2012) and inhibit its activity, reducing Ca2+ transfer.

If SERCA activity is lowered by TMX1, its activity is enhanced by the redox
active form of the redox-sensitive selenoprotein N (SEPN1) (Gutierrez and Simmen
2018). MAMs result particularly enriched in redox regulatory proteins, and TMX1
and SEPN1 are among them (Krols et al. 2016; Marino et al. 2015).

Calnexin is a chaperone protein that localizes at the ER-mitochondrial contact
sites in a palmitoylation-dependent manner (Lynes et al. 2012). The primary
function of this protein is to interact with misfolded proteins to improve the folding
efficiency of ER proteins (Lamriben et al. 2016). Upon palmitoylation, calnexin
moves to the MAMs, where it interacts with SERCA2b, increasing Ca2+ transfer
from the cytosol to the ER (Lynes et al. 2013). Interestingly, the modulation of
SERCA2b activity by calnexin is counteracted by TMX1 in a way that may suggest
competition for the same binding site (Krols et al. 2016; Raturi et al. 2016).

IP3Rs are large-conductance nonselective cation channels that together with the
RyRs, which is mainly expressed in sarcoplasmic reticulum, are major structures
through which Ca2+ exits the ER (Ashby and Tepikin 2001).

IP3R channels are homo- or heterotetramers composed of four subunits of
approximately 300 kDa each. The molecular structure of the IP3R monomer,
determined by cryogenic electron microscopy, consists of three structural domains:
an N-terminal ligand-binding domain, containing both the IP3-binding core and the
suppressor region, a central modulatory domain, and a Ca2+ channel region at the
C-terminus containing six intramembrane helices. The C-tails interact directly with
the N-terminal domains of the other subunits (Fan et al. 2015).

In vertebrates, there are three different isoforms of IP3R (IP3R1, IP3R2, and
IP3R3) encoded by three genes (ITPPR1, ITPR2, and ITPR3, in humans). Despite
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the high homology in the amino acid sequences (60–80%), these isoforms have a
different expression pattern, with IP3R1 mainly expressed in neuronal cells, IP3R2
in muscle and liver cells, and ubiquitous IP3R3 in most cultured cells (Mikoshiba
2007; Foskett et al. 2007). In addition, the different isoforms show differences in
ligand-binding sensitivity and regulation by Ca2+ and ATP (Newton et al. 1994;
Miyakawa et al. 1999; Tu et al. 2005; Khan et al. 2006; Betzenhauser et al. 2008;
Wagner 2nd et al. 2008; Vervloessem et al. 2015).

IP3Rs are enriched at MAMs levels, where they also exert a structural role, being
in close proximity with the mitochondrial voltage-dependent anion channel
1 (VDAC1) and by interacting with the chaperone glucose-regulated protein
GRP75 which acts as a tether between the two proteins and organelles (Bernard-
Marissal et al. 2018). It has also been recently highlighted that IP3R isoforms
differently regulate ER-mitochondrial contacts and local calcium transfer, proving
that IP3Rs structural role in MAM compartment is crucial (Bartok et al. 2019).

The activity of IP3R receptors is regulated primarily by inositol trisphosphate
(IP3), released at the plasma membrane after the hydrolysis of phosphatidylinositol
4,5-bisphosphate (PIP2) by phospholipase C (PLC).

However, IP3Rs can also be modulated by ATP, post-translational modification
(Mak and Foskett 2015; Bansaghi et al. 2014; Yule et al. 2010; Prole and Taylor
2016; Ivanova et al. 2014; Ramos-Franco et al. 1998), and Ca2+ ions, which act both
from the luminal ER side, increasing the sensitivity to its ligand, and from the
cytoplasmatic sides from which Ca2+ plays a dual role as an activator at low
concentrations and an inhibitor if its concentration is higher than 300 nM (Table 1).

As noted earlier, there is a juxtaposition between the two MAM-forming
organelles, and Ca2+ release from the ER is followed by uptake at the mitochondrial
interface.

2.2 Mitochondrial Side

After being released from the ER, Ca2+ ions can first cross the outer mitochondrial
membrane through VDAC and, once in the mitochondrial intramembrane space,
enter the matrix through the mitochondrial Ca2+ uniporter (MCU).

VDAC is a 30-kDa protein existing in all eukaryotic cells in three different
isoforms: VDAC1 and VDAC2 are expressed in most mammals, and VDAC3 is
the isoform with the lowest expression (De Pinto et al. 2010; Huang et al. 2014;
Maldonado et al. 2013). VDAC is the most abundant outer mitochondrial membrane
protein, and due to its permeability not only to anions but also to respiratory
substrates, ATP, reactive oxygen species (ROS), and cytochrome C can be
considered master regulators of mitochondrial bioenergetics (Shoshan-Barmatz
et al. 2010; Weisthal et al. 2014). The permeability of this channel is highly impacted
by its two conformational states, opened and closed, since in the closed state, the
channel is permeable only to small ions but not to anionic metabolites (Shoshan-
Barmatz et al. 2010; Gincel et al. 2000; Schein et al. 1976). The switch between the

Cancer-Related Increases and Decreases in Calcium Signaling at the Endoplasmic. . .



Table 1 Summary of Ca2+ signaling modulators founded at MAMs and implicated in cancer onset
and progression

Modulator
Ca2+-related
mechanism Tumor

Downregulation
of MAMs Ca2+

crosstalk

Low ER-Ca2+

release
Akt IP3R3

phosphorylation
Thyroid, breast,
cervical, ovarian,
non-small cell lung,
pancreatic, prostate,
gastric, brain, and colon
cancer; renal and
hepatocellular
carcinoma (Revathidevi
and Munirajan 2019)

BAP1 IP3R3
deubiquitylation
and stabilization

Mesothelioma (Bononi
et al. 2017), uveal and
cutaneous melanoma,
renal carcinoma (Rai
et al. 2016)

Bcl-2 Decreases ER Ca2+

efflux by targeting
IP3R3

Lymphoma, small cell
lung cancer
(Bittremieux et al.
2019)

Bcl-XL Enhance IP3R-
mediated Ca2+

signals

Multiple myeloma,
melanoma,
glioblastoma, and
prostate, colorectal,
non-small-cell lung, and
pancreatic cancer
(Trisciuoglio et al.
2017; Scherr et al.
2016; Zhang et al. 2014;
Yoshimine et al. 2013)

ERO1-α Oxidizes IP3R1
promoting ER Ca2+

release

Breast and colon cancer
(Takei et al. 2017;
Tanaka et al. 2017)

H-Ras Decreases IP3R3
expression

Pancreatic carcinoma;
colorectal and head and
neck cancer; lung,
hematopoietic, and
dermatological cancers
(Munoz-Maldonado
et al. 2019)

Mcl-1 Stimulates non-
MAM-localized
IP3R3 Ca2+ release
increasing ER Ca2+

leak

Lung, breast, and
cervical cancer (Chen
et al. 2019; Campbell
et al. 2018; Zhang et al.
2012)

p53 Binds to SERCA
pump

Almost all

PACS-2 Player in MAMs
integrity regulation

Colorectal cancer
(Kveiborg and Thomas
2018)

(continued)
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Table 1 (continued)

Modulator
Ca2+-related
mechanism Tumor

PERK Acts as MAMs
structural tethering

Breast cancer (Feng
et al. 2017)

PML Regulates the
phosphorylation of
IP3R3

Almost all

PTEN Antagonizes IP3R3
Akt-mediated
phosphorylation

Lung, prostate, head,
stomach, breast, and
pancreatic cancer
(Salmena et al. 2008)

RyR2 ER Ca2+ release Melanoma, breast
cancer, lymphoma,
prostate cancer, thyroid
carcinoma (Xu et al.
2019; Carpi et al. 2018;
Lu et al. 2017;
McCarthy et al. 2003;
Mariot et al. 2000)

STAT3 Promotes IP3R3
degradation

Breast cancer (Yu et al.
2014)

Low
mitochondrial
uptake

Bcl-2 Regulates
mitochondrial Ca2+

uptake targeting
VDAC1

Hematopoietic, lung,
gastric, breast, and
prostate cancer (Frenzel
et al. 2009)

Bcl-XL Regulates
mitochondrial Ca2+

uptake targeting
VDAC1

Multiple myeloma,
melanoma,
glioblastoma, and
prostate, colorectal,
non-small-cell lung, and
pancreatic cancer
(Trisciuoglio et al.
2017; Scherr et al.
2016; Zhang et al. 2014;
Yoshimine et al. 2013)

EZH2 Its inhibition
inactivates MICU1

Breast, prostate, and
endometrial cancers;
melanoma and head and
neck squamous cell
carcinoma (Kim and
Roberts 2016)

FATE1 Acts as a MAMs
anti-tether agent

Hepatocellular
carcinoma; colon and
gastric cancer (Dong
et al. 2003)

Fhit Increases
mitochondrial Ca2+

hotspots number

Silenced in >50% of
cancers (Kiss et al.
2017)

(continued)
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Table 1 (continued)

Modulator
Ca2+-related
mechanism Tumor

miR-25 Downregulates
MCU

Prostate and in colon
cancer (Marchi et al.
2013)

miR-7 Reduce VDAC1
expression

Hepatocarcinoma and
neuroblastoma
(Chaudhuri et al. 2016a;
Bargaje et al. 2012)

TRPC3 Affects
mitochondrial
membrane
potential

Breast cancer (Wang
et al. 2019)

Upregulation of
MAMs Ca2+

crosstalk

High ER-Ca2+

release
ERO1-α Regulates Ca2+

efflux from the ER
Breast and colon (Takei
et al. 2017; Tanaka et al.
2017)

GRP78 Store ER Ca2+ Epithelial ovarian and
prostate cancer; diffuse
large B cell lymphoma;
renal cell, colorectal,
endometrial gastric, and
squamous cell
carcinoma (Niu et al.
2015)

IP3R3 Ca2+ release from
the ER

Hepatocellular and
kidney carcinoma;
cholangiocarcinoma
(Guerra et al. 2019;
Ueasilamongkol et al.
2020; Rezuchova et al.
2019)

Sig1R Binds and activate
IP3R3

Glioma and melanoma;
prostate, lung, colon,
and breast cancer
(Crottes et al. 2013)

High
mitochondrial
Ca2+ uptake

MCU Mitochondrial Ca2+

uptake
Breast cancer;
hepatocellular
carcinoma (Vultur et al.
2018)

MCUR1 Positive regulator
of MCU

Hepatocellular
carcinoma (Jin et al.
2019; Ren et al. 2018)

MICU1 Regulates MCU
gating

Renal, ovarian, breast,
and lung cancer (Marchi
et al. 2019a)

RIPK1 Binds MCU to
promote Ca2+ entry

Colorectal cancer (Zeng
et al. 2018)
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opened and closed states is regulated by many factors, including Bcl2 family
members (Tsujimoto and Shimizu 2000), Ca2+ ions (Bathori et al. 2006), and
voltage. Indeed, high mitochondrial voltages induce VDAC to close (Gincel et al.
2000) in a N-terminus-mediated manner (Abu-Hamad et al. 2009).

Among VDAC channels, the most frequently expressed and consequently studied
isoform is VDAC1 (Messina et al. 2012), which has been shown to be targeted to the
MAMs (Hajnoczky et al. 2002; Shoshan-Barmatz and Gincel 2003; Colombini
2012) and to regulate the Ca2+ flux through the mitochondria outer membrane
(Rapizzi et al. 2002). If regulation of mitochondrial Ca2+ signaling is not a unique
feature of VDAC1, the ability to transmit proapoptotic stimuli to the mitochondria
seems to be an exclusive characteristic of this isoform (De Stefani et al. 2012).

To reach the mitochondrial matrix and regulate all the previously mentioned
processes, Ca2+ entering the outer mitochondrial membrane has to permeate the
inner mitochondrial membrane that, unlike the outer membrane, is not permeable to
ions. The accumulation of Ca2+ inside the mitochondrial matrix follows an
electrogenic gradient and is driven by the low Ca2+ affinity uniporter complex
MCU. Due to the low Ca2+ affinity of this MCU complex, the rapid mitochondrial
ion accumulation is difficult to explain without considering the presence of close
contacts between the ER and the mitochondria, which create microdomains with a
high Ca2+ concentration (Rizzuto et al. 1998).

MCU is a complex of approximately 480 kDa composed of the channel-forming
subunits MCUa andMCUb, organized mainly in pentamers. MCUa andMCUb have
opposite effects on Ca2+ ion transfer (allowing and inhibiting permeation,
respectively), and their relative quantities in the complex regulate the Ca2+ transport
capability of MCU itself. In addition to the channel-forming subunits, mitochondrial
calcium uptake 1 and 2 (MICU1 and MICU2) and the essential MICU regulator
(EMRE) are part of the uniporter complex and play a pivotal role in regulating the
integrity of the complex itself (De Stefani et al. 2015; Oxenoid et al. 2016; Raffaello
et al. 2013; Sancak et al. 2013). MCU complexes were enriched in MAMs,
positioned more to the mitochondrial periphery, indicating high accessibility to
cytoplasm-derived Ca2+ inputs (Marchi et al. 2017).

Among the mitochondrial Ca2+ uptake family of regulator proteins MICU1 and
MICU2, the best characterized is MICU1, which functions as a gatekeeper that can
sense the Ca2+ levels of the intermembrane space. Indeed, at low concentrations, the
gate is closed, but as soon as the Ca2+ levels pass the [Ca2+] threshold of 700 nM for
MICU1-MICU2 heterodimers and 300 nM for MICU1 homodimers, the Ca2+-
binding EF hands of MICU1 bind the ion and undergo a conformational change
that opens the channel (Csordas et al. 2013; Mallilankaraman et al. 2012a; Perocchi
et al. 2010; Petrungaro et al. 2015; Park et al. 2020) (Table 1).
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3 Decrease in ER-Mitochondria Ca2+ Crosstalk

3.1 Dysfunctional ER-Ca2+ Release

As described in the introductory section, in recent years, increasing evidence has
shown that organelles communicate with each other through Ca2+ signaling. In
particular, at the MAMs level, interorganellar Ca2+ signaling is profoundly
spatiotemporally regulated. Interestingly, in the tumor setting, an alteration of Ca2+

signaling has been shown to affect malignant transformation and tumor progression
through the control of cell death programs and metabolism (Rimessi et al. 2020;
Monteith et al. 2007).

In this context, the ER not only plays a decisive role in Ca2+ signaling but also
guarantees a control system for correct protein folding and stress sensing. Alterations
in ER homeostasis, including substantial Ca2+ depletion, are associated with the
pathophysiology of many diseases, including cancer (Mekahli et al. 2011).

The normal Ca2+ exchange between the ER and the mitochondria requires
adequate filling of the ER Ca2+ stores. Thus, decreasing the ER Ca2+ levels will
compromise ER-mitochondrial Ca2+ transfer. As a consequence, changes in the ER
Ca2+ store content affect the Ca2+ efflux from the ER to the mitochondria and
ultimately cell survival (Ivanova et al. 2017).

The maintenance of physiological low levels of mitochondrial Ca2+ uptake by
IP3R is crucial to preserve cellular bioenergetics in normal and cancer cells by
enabling the dehydrogenase activation of the tricarboxylic acid (TCA) cycle, strong
ATP production and metabolic intermediates for the generation of building blocks,
allowing the cells to enter the cell cycle and proliferate. In breast cancer cells but not
in normal cells, Ca2+ release suppression mediated by the inhibition of IP3R activity
caused cell death through a deregulated autophagic mechanism (Singh et al. 2017a)
and mitotic disruption, as reported by Cárdenas C. et al. (2016).

Regarding type 3 IP3R, the depletion of IP3R3 or its pharmacological blocking
increased the level of the autophagic marker microtubule-associated protein 1A/1B-
light chain 3 (LC3)-II through the upregulation of autophagic protein 5 (Atg5) and
ROS generation, leading to the blockage of tumor growth in a mouse model of breast
cancer (Singh et al. 2017a). This finding is correlated with the high expression of
IP3R3 in human malignant tissues and high concentrations of metabolites in the
serum of patients (Singh et al. 2017b).

Moreover, it has been reported that the inhibition of IP3R with caffeine, a
nonspecific inhibitor of these receptors, leads to a decreased migration of
glioblastoma cells and a substantially increased mean survival in a mouse
glioblastoma xenograft model (Kang et al. 2010). In the Caco-2 colon cancer cell
line, IP3R3 silencing, or nonspecific pharmacological inhibition by 2-APB in gastric
cancer cells, induced apoptosis, while overexpression protected cells from
staurosporine-induced apoptotic death (Shibao et al. 2010).

Interestingly, various MAM-located oncosuppressors and oncogenes have been
reported to interact with IP3Rs, including the oncogene protein kinase B (PKB), also
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known as Akt, promyelocytic leukemia protein (PML), BRCA1 associated protein
1 (BAP1), phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and
B-cell lymphoma 2 (Bcl-2) family proteins, modifying the Ca2+ release patterns and
cell fate (Bononi et al. 2017; Akl and Bultynck 2013; Missiroli et al. 2017; Kuchay
et al. 2017; Giorgi et al. 2010). Although the aforementioned proteins are all present
at the ER-mitochondria interface, only PTEN and PML are particularly enriched on
MAMs (Missiroli et al. 2016; Bononi et al. 2013).

Akt, as well as protein kinase C (PKC) isozymes (Pinton et al. 2004), is a key
player in regulating multiple signaling pathways through calcium signaling tuning,
such as cell metabolism, cell proliferation, and survival (Szado et al. 2008). Notably,
in human breast cancers, the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway
is frequently dysregulated (Gonzalez-Angulo et al. 2011; Stemke-Hale et al. 2008).

On the ER side, IP3R Akt-mediated phosphorylation results in a decreased
magnitude of Ca2+ release and, as a result, reduced mitochondrial Ca2+ uptake.
Moreover, this decrease in Ca2+ flux protected glioblastoma cell lines from the
effects of apoptotic stimuli (Szado et al. 2008).

In 2012, our group demonstrated that Akt specifically phosphorylates type
3 IP3R, leading to diminished mitochondrial Ca2+ influx and, consequently,
protecting cells from apoptosis (Marchi et al. 2012).

PML tumor suppressor protein has been implicated in diverse cellular processes
ranging from tumor suppression to defense against virus infection (Bernardi and
Pandolfi 2007; Everett and Chelbi-Alix 2007; Hsu and Kao 2018; Pinton et al.
2011). An extranuclear fraction of PML has been demonstrated to be targeted to the
MAMs in a p53-dependent manner (Missiroli et al. 2016) and to form a
multicomplex with type 3 IP3R, the serine threonine kinase Akt and protein
phosphatase 2A (PP2A) (Giorgi et al. 2010).

It has been shown that PML regulates the phosphorylation of IP3R by controlling
the activity of Akt through the recruitment of the PP2A phosphatase at the MAMs
interface. Hence, PML can coordinate Ca2+ mobilization into the mitochondria,
which then triggers the cell death program. Conversely, in the absence of PML,
PP2A does not assemble with IP3R and Akt, resulting in a higher activation of Akt
(phospho-Akt). Once activated, Akt can hyperphosphorylate IP3R, thereby
suppressing ER Ca2+ release to the mitochondria (Giorgi et al. 2011).

BAP1 is a member of the ubiquitin C-terminal hydrolase (UCH) subfamily of
deubiquitylating enzymes and has tumor suppressor activity, which has been mainly
correlated with its nuclear localization (Lee et al. 2014; Ismail et al. 2014). When
BAP1 localizes to the ER, it binds, deubiquitylates, and stabilizes the activity of the
IP3R3 channel, modulating Ca2+ release from the ER to the cytosol and then to the
mitochondria, promoting apoptosis. In BAP1+/� carriers, the reduced level of BAP1
resulted in a diminished IP3R3 quote with a subsequent Ca2+ transfer decrease from
the ER to the mitochondria. This event caused a reduced propensity of BAP1+/� cells
to undergo apoptosis following DNA damage induced by asbestos or UV light
(Bononi et al. 2017).

PTEN is another Ca2+-related tumor suppressor that has been shown to be
mutated or suppressed in many tumors (Salmena et al. 2008). Bononi et al.
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demonstrated that a fraction of cellular PTEN is localized at the MAMs, where it
interacts with IP3R3, antagonizing its Akt-mediated phosphorylation and enhancing
Ca2+ transfer from the ER to mitochondria. In this way, it reestablishes cellular
sensitivity to Ca2+-mediated proapoptotic stimuli. Conversely, PTEN knockdown
reduced the Ca2+ release from the ER and decreased mitochondrial Ca2+ transients,
thus preventing cell death activation (Bononi et al. 2013). Moreover, a novel role for
PTEN has been proposed; it can compete with F-box and leucine-rich repeat protein
2 (FBXL2), an E3-ubiquitin ligase F-box protein, for binding to IP3R3 to prevent its
degradation. It has been demonstrated that FBXL2 degradation of IP3R3 is enhanced
in cancer cells in which PTEN expression is lowered, thereby resulting in the
inhibition of apoptosis (Kuchay et al. 2017).

The Bcl-2 family of anti- and proapoptotic proteins is predominantly localized to
the mitochondria, ER, and MAMs, and their activities strongly reflect their
intracellular localization (Morciano et al. 2018). Bcl-2 is a proto-oncogene known
for its involvement in inhibition of apoptosis through its interaction with the
proapoptotic proteins BCL2 associated X protein (Bax) and Bcl-2 homologous
antagonist/killer (Bak) (Rimessi et al. 2020). Indeed, at the ER, Bcl-2 prevents
excessive Ca2+ flux by directly targeting all three IP3R receptor isoforms, which
would lead to mitochondrial Ca2+ overload and opening of the permeability
transition pore (mPTP) (Chen et al. 2015; Bonora et al. 2017). Dysregulation of
Bcl-2 expression has been highlighted in various cancers, including hematopoietic,
lung, breast, and prostate tumors (Morciano et al. 2018).

Bcl-XL is another antiapoptotic member of the same family that is frequently
overexpressed in many tumors, such as multiple myeloma, melanoma, glioblastoma,
prostate cancer, colorectal cancer, non-small cell lung cancer, and pancreatic cancers
(Trisciuoglio et al. 2017; Scherr et al. 2016; Zhang et al. 2014; Yoshimine et al.
2013). This protein is localized at the MAMs (Monaco et al. 2015), where it directly
binds the IP3R channels, regulating IP3R-related Ca2+ release. Bcl-XL caused a
strong sensitization of IP3R, promoting prosurvival Ca2+ oscillations (White et al.
2005).

Among the antiapoptotic proteins of the Bcl-2 family, myeloid cell leukemia
1 (Mcl-1) also lowers the calcium ER store content by stimulating IP3Rs outside of
the MAMs, thereby increasing Ca2+ leakage from the ER, resulting in a decline in
the basal ER Ca2+ levels (Eckenrode et al. 2010). In the presence of low [IP3], in
Mcl-1-expressing cells, store depletion becomes more prominent, indicating that the
sensitivity of IP3-dependent Ca2+ release is enhanced by Mcl-1. Mcl-1-mediated
IP3R sensitization also contributes to low-level IP3R-mediated Ca2+ signaling from
the ER to the mitochondria and thereby stimulates mitochondrial bioenergetics
(Bittremieux et al. 2016).

At the MAMs, oncogenic H-Ras also affects Ca2+ transfer to the mitochondria to
promote evasion from the apoptotic cascade (Rimessi et al. 2014). In colorectal
cancer cells, oncogenic K-Ras modified the expression of IP3Rs, weakening the
Ca2+ release from the ER to allow cells to escape Ca2+-mediated apoptosis (Pierro
et al. 2014). Indeed, Ras-driven mitochondrial dysfunction causes metabolic and
redox changes that favor tumorigenesis (Hu et al. 2012). Hence, proper maintenance

A. Danese et al.



of IP3R3 protein levels is crucial for preventing oncogenesis by strengthening
tumor-suppressive ER-mitochondrial Ca2+ transfer.

Furthermore, MAMs are a molecular platform for the regulation of many
oxidoreductases. In this context, endoplasmic reticulum oxidoreductin 1-α (ERO1-
α) activity is broadly investigated for its enrichment at ER-mitochondria contact sites
(Anelli et al. 2012) and its high expression in different tumor types (Kakihana et al.
2012). This oxidase impacts ER-Ca2+ storage and IP3-dependent fluxes. During ER
stress, ERO1-α oxidizes type 1 IP3R, promoting the release of Ca2+ from the ER
(Anelli et al. 2012). Furthermore, endoplasmic reticulum resident protein
44 (ERp44) (an ER luminal chaperone protein) binds to IP3R1 and inhibits its
channel activity under reducing conditions, resulting in the blockade of Ca2+ transfer
to the mitochondria (Higo et al. 2005). Oxidation of IP3R1 by ERO1-α causes the
dissociation of ERp44, thus leading to the activation of Ca2+ release via IP3R1
(Li et al. 2009). ERO1-α silencing has been demonstrated to profoundly affect
mitochondrial Ca2+ uptake, likely modifying MCU activity. Thus, ERO1-α links
redox and Ca2+ homeostasis in MAMs (Anelli et al. 2012).

Recently, the oncogenic transcription factor signal transducer and activator of
transcription 3 (STAT3), which mediates the signaling of cytokines, growth factors,
and oncogenes (Yu et al. 2014), has been shown to localize only to MAMs (Su et al.
2020). At this location, it modulates ER-mitochondria Ca2+ release by interacting
with the IP3R3 channel and promoting its degradation, resulting in greater cellular
resistance to apoptotic stimuli (Avalle et al. 2019). In breast cancer cell lines,
silencing STAT3 enhances the ER Ca2+ release and sensitivity to apoptosis
following oxidative stress, correlating with increased IP3R3 levels. This evidence
suggests that STAT3-mediated IP3R3 downregulation in the ER crucially
contributes to its antiapoptotic functions via Ca2+ flux modulation.

Together with the IP3R receptors, RyRs and SERCA are the major Ca2+ players
in the ER (Berridge 2012). In general, RyRs regulate melanocyte and T cell
proliferation (Hakamata et al. 1994; Kang et al. 2000) and astrocyte migration
(Matyash et al. 2002). Ryanodine receptor type 2 (RyR2), a member of the RyR
family, controls the Ca2+ release from the sarcoplasmic reticulum into the cytosol
(Ding et al. 2017). Different studies have confirmed the association of RyR2 with
several cancer types, including melanoma (Carpi et al. 2018), breast cancer (Lu et al.
2017), lymphoma (McCarthy et al. 2003), and prostate cancer (Mariot et al. 2000).
Recently, it has been reported that RyR2 is downregulated in thyroid carcinoma
tissues and that low expression levels of RyR2 are closely associated with poor
prognosis in thyroid carcinoma patients (Xu et al. 2019).

Over the past years, the tumor suppressor p53 has been shown to be altered in
many human cancer tissues, including colon, breast, lung, brain, bladder, pancreatic,
stomach, and esophageal cancer (Vogelstein et al. 2000). Some of p53 fraction is
located at the MAMs, where it directly binds to the SERCA pump, changing its
oxidative state and thus leading to an increased Ca2+ load, followed by an enhanced
flux to the mitochondria. Consequently, during apoptotic stimulation, more Ca2+ can
be released from the ER into the mitochondria, enhancing mitochondrial Ca2+

overload, opening of the mitochondrial mPTP, release of caspase cofactors, and
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ultimately induction of the intrinsic apoptosis pathway (Morciano et al. 2018).
Dysregulation of p53-dependent Ca2+ homeostasis led to reduced ER Ca2+ release,
resulting in a low responsiveness to apoptotic stimulation (Giorgi et al. 2015).

We must also note the phosphofurin acid cluster sorting 2 protein (PACS-2) and
PKR-like ER kinase (PERK). PACS-2 is a multifunctional protein involved in
retrograde ER-Golgi trafficking of multiple proteins (Youker et al. 2009). Although
it is unclear whether a direct interaction of PACS-2 at the MAMs occurs, it was
demonstrated that depletion of PACS-2 reduces mitochondrial-ER contact sites and
mediates apoptosis (Simmen et al. 2005). PACS-2 was also demonstrated to be a
fundamental player in rapamycin complex 2 (mTORC2)-dependent regulation of
MAMs integrity (Betz et al. 2013). PERK is a protein kinase that, together with
inositol-requiring enzyme 1 (IRE1) and transcription factor 6 (ATF6), acts as an ER
stress sensor from the ER membrane, controlling UPR functioning. The function of
this protein in the MAMs is independent of its role as an ER stress sensor and
transcriptional regulator of redox homeostasis. Indeed, PERK maintains, through its
cytoplasmic domains, the juxtaposition of the ER and the mitochondria, acting as a
structural tether and permitting the transmission of ROS-mediated signals (Verfaillie
et al. 2012).

In conclusion, changes in the ER Ca2+-store content would perturb Ca2+ transfer
from the ER to the mitochondria and ultimately influence cell death or survival. A
reduction in intracellular store Ca2+ release is certainly the main mechanism adopted
by cancer cells to escape mitochondria-mediated apoptosis (Fig. 1).

Fig. 1 Downregulation of MAMs Ca2+ crosstalk in cancer: graphical representation of the calcium
signaling regulators involved in a cancer-related decreased Ca2+ crosstalk state. See text for further
details. Ca2+, calcium; ER, endoplasmic reticulum
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3.2 Perturbed Mitochondrial Ca2+ Uptake

Cancer-derived modifications in cellular physiology could be related to impairment
of the Ca2+ signaling network, which is frequently associated with the dysregulation
of several Ca2+ channels and pumps (Prevarskaya et al. 2014; Hanahan and
Weinberg 2000).

In addition to limiting the excessive release of Ca2+ from the ER, cancer cells can
effectively prevent mitochondrial Ca2+ overload by limiting mitochondrial Ca2+

uptake.
Among the proteins responsible for limitation of mitochondrial calcium influx are

Bcl-2 and Bcl-XL, the antiapoptotic Bcl-2-family proteins discussed in the previous
paragraph; Bcl-2 and Bcl-XL are partially localized at the mitochondrial outer
membrane and, similar to other antiapoptotic proteins, are frequently upregulated
in cancer; these proteins can regulate mitochondrial Ca2+ uptake through VDAC1
(Shoshan-Barmatz et al. 2010).

Considering that VDAC1 is involved in death and cell survival, it is not surprising
that this channel could be a target for Bcl-2 family proteins (De Stefani et al. 2012).
These proteins target the N-terminal region of VDAC1 (Abu-Hamad et al. 2009;
Arbel and Shoshan-Barmatz 2010), and it has been demonstrated that only the
Bcl-XL BH4 domain is essential to bind VDAC1 and inhibit cell death (Monaco
et al. 2015). Several studies demonstrated that the interaction between Bcl-XL and
VDAC1 suppresses proapoptotic Ca2+ uptake, preventing the dissipation of the
mitochondrial potential and the release of cytochrome c and apoptosis-inducing
factor (AIF) through the outer membrane.

Indeed, studies concerning mitochondrial Ca2+ uptake that compare Bcl-XL-
overexpressing versus Bcl-XL-deficient cells have demonstrated that this protein
may be involved in MAMs microdomain reorganization and results in an alteration
of the capacity of mitochondrial Ca2+ uptake, proving that Bcl-XL inhibits VDAC1
(Monaco et al. 2015; Bittremieux et al. 2016; Shimizu et al. 2000; Li et al. 2008).

Nevertheless, VDAC1 in hepatocarcinoma tissues can be downregulated by the
small noncoding RNA miR-7, influencing tumor proliferation and metastasis
(Chaudhuri et al. 2016a; Bargaje et al. 2012). Chaudhuri et al. showed that in
human neuroblastoma cells and in mouse primary cortical neurons, miR-7 can
reduce VDAC1 expression, with consequent inhibition of mitochondrial Ca2+

uptake, membrane depolarization, mitochondrial fragmentation, cytochrome c
release, and ROS production, promoting cancer cell survival (Chaudhuri et al.
2016a).

MCU allows calcium ion permeation into the mitochondrial matrix, and its
overexpression leads to an increase in mitochondrial Ca2+ entry and ROS
production, influencing the migration, invasion, and size of different tumor types
(Yu et al. 2017; Tang et al. 2015; Wang et al. 2007). However, a reduction in MCU
expression decreases mitochondrial Ca2+ uptake, the opening of the mPTP and the
release of proapoptotic factors, thus having a protective effect on apoptosis (Marchi
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et al. 2019b; Sebag et al. 2018; Oropeza-Almazan et al. 2017; Yuan et al. 2017; Liao
et al. 2015; Qiu et al. 2013; Penston and Wormsley 1986).

Marchi et al. showed that, through MCU downregulation, the miR-25
MCU-targeting microRNA could perturb Ca2+ homeostasis, reducing the
concentration of mitochondrial Ca2+ levels in HeLa cells. However, high levels of
miR-25 have been observed both in prostate and colon cancer. The miR-25-
dependent reduction in mitochondrial Ca2+ uptake correlates with resistance to
proapoptotic stimuli and can be reversed by anti-miR-25 overexpression. Treatment
with anti-miR-25 can restore the MCU expression levels and reverse the
pathophysiology, thus suggesting a novel therapeutic target for prostate and colon
cancer (Marchi et al. 2013).

One gene that is frequently deleted in many human cancers, principally in those
caused by environmental carcinogens, is fragile histidine triad (FHIT).
Consequently, its product, the Fhit protein, is absent or reduced in most cancers
(Huebner and Croce 2003). The Fhit protein is localized in the mitochondria and the
cytosol and acts as a tumor suppressor, increasing susceptibility to apoptosis
(Siprashvili et al. 1997). Reintroduction of Fhit to the highly carcinogen-susceptible
Fhit�/� mouse model reduced tumor sizes by activating apoptotic cell death (Zanesi
et al. 2005). The Fhit protein generates ROS and enhances mitochondrial Ca2+

uptake by increasing mitochondrial Ca2+ hotspots. Therefore, Fhit acts as a tumor
suppressor by modulating MCU opening and enhancing the susceptibility of cells to
apoptosis, thus potentiating the effect of apoptotic agents (Rimessi et al. 2009).

Transient receptor potential cation channel subfamily C member 3 (TRPC3)
belongs to a group of nonselective cation channels that are involved in different
cellular mechanisms. TRPC3 channels can influence the mitochondrial membrane
potential following their up- and downregulation. The activation of Ca2+-sensitive
downstream pathways occurs through the influx of calcium from transient receptor
potential channels (TRP channels), which act as apoptotic regulators (Wang et al.
2019; Takahashi et al. 2018; Raphael et al. 2014; Monet et al. 2010). However,
Shengjie Feng et al. have shown that a fraction of the TRPC3 protein is localized to
the mitochondria and mediates mitochondrial Ca2+ uptake when the cytosolic
calcium concentration is elevated. Since, as we previously noted, mitochondrial
membrane potential seems to be affected by TRPC3 channels and because
mitochondrial Ca2+ uptake is not abolished when MCU expression is downregulated
(De Stefani et al. 2011), TRPC3 might be another channel that allows the entry of
calcium into the mitochondria, in addition to MCU (Kirichok et al. 2004). In
particular, resistance to apoptosis and the proliferation of some tumors could be
related to its downregulation, which results in reduced mitochondrial calcium uptake
(Feng et al. 2013).

Fetal and adult testis-expressed 1 protein (FATE1) is a 21-kDa protein that
belongs to the cancer-testis antigen proteins that are mainly expressed in the testis
under physiological conditions and are upregulated in different cancer types (Dong
et al. 2003; Whitehurst 2014; Simpson et al. 2005). This molecule, being a member
of the mitochondrial fission factor (Miff) protein family, shares some structural
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similarities with Mff (Gandre-Babbe and van der Bliek 2008). The oncoprotein
FATE1, which is located on the mitochondrial outer membrane preferentially in
the MAMs compartment, is implicated in the regulation of Ca2+-dependent
apoptosis in cancer cells, acting as an anti-tether agent through the modulation of
the distance between the ER and the mitochondria (Doghman-Bouguerra et al.
2016), being a direct connection between its increased expression and MAMs
morphology in adrenocortical carcinoma (AAC) patients with a poor prognosis
(Doghman-Bouguerra et al. 2016). Overexpression of FATE1 in adenoid cystic
carcinoma (ACC) was related to a decrease in mitochondrial Ca2+ uptake that
confers resistance to proapoptotic stimuli and chemotherapeutic drugs (Doghman-
Bouguerra et al. 2016).

In most human cancer types, including head and neck squamous cell carcinoma
(HNSCC), high levels of enhancer of zeste homolog 2 (EZH2) have been detected.
EZH2 is the enzymatic subunit of the PRC2 complex (polycomb repressive complex
2), which methylates lysine 9 and lysine 27 of histone H3, and is fundamental for
transcriptional repression (Kim and Roberts 2016; Schuettengruber et al. 2007;
Boyer et al. 2006). EZH2 acts as an oncogene, and its high expression levels are
associated with tumor cell proliferation and migration (Zhou et al. 2015a; Ning et al.
2015). Furthermore, it has been shown that inhibition of EZH2 in HNSCC cells
in vitro and in vivo induces loss of mitochondrial membrane potential (ΔΨm) with
consequent activation of cell death pathways. Inhibition of EZH2 involves
accumulation of Ca2+ into the mitochondria, induced by inactivation of MICU1
(Zhou et al. 2015b; Cosentino and Garcia-Saez 2014) (Fig. 1).

4 Upregulation of ER-Mitochondria Ca2+ Crosstalk

4.1 New Insights into Ca2+ Signaling Perturbation
in the MAMs

The numerous molecular pathways described thus far all involve a decreased uptake
of Ca2+ to the mitochondria, resulting from decreased ER release or mitochondrial
defects. Historically, reports that have assessed the remodeling of MAMs Ca2+

signaling associated with tumorigenesis, invasion, and metastasis all led to the
conclusion that cancer cells undergo minor mitochondria-dependent apoptosis
because of decreases in the Ca2+ release from the ER. Recently, the characterization
of newMAM-localized proteins and the finding of new mechanisms of action led the
scientific community to consider that even an upregulation of Ca2+ signaling at the
MAMs level could be harmful and drive tumor onset and progression. In the
following paragraphs, we will describe how this condition, hitherto described as
the cause of apoptotic cell death, can lead to the onset and development of tumor
diseases.
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4.2 Increased ER-Ca2+ Release

The endoplasmic reticulum is an organelle that contains a network of tubules and
flattened sacs and is mainly known for its major role in the production, processing,
and transport of proteins and lipids. The ER also represents the major intracellular
store of Ca2+, an ion that is necessary on its lumen for second-messenger-induced
Ca2+ release, the control of capacitative Ca2+ influx, and intra-ER chaperone
activities such as polypeptide translocation, protein folding, and ER-associated
degradation (Buck et al. 2007). In normal tissue cells, a sustained Ca2+ flux from
the ER to the mitochondria can enhance the sensitivity of mitochondria to apoptotic
stimuli; however, in some cases, an increase in Ca2+ ion leakage from the ER to the
MAMs can promote tumor formation, especially in specific tissues and organs. For
ER-mitochondria interorganellar Ca2+ signaling and, in particular, increased ER Ca2
+ release, the recent revelation of the mechanisms by which IP3R3 upregulation
drives oncogenesis via ER-mitochondrial Ca2+ crosstalk is particularly important.
This statement is particularly strong because until last year, IP3R3 was well
characterized as a Ca2+-related proapoptotic protein. In fact, the tumor suppressors
BAP1 and PTEN have a stabilizing effect on IP3R3 in the ER, promoting
susceptibility to cell death (Bononi et al. 2017; Kuchay et al. 2017), and in contrast,
the oncogene K-RasG13D downregulates IP3R3, preventing the apoptotic death of
cancer cells (Pierro et al. 2014). Three recent works by Guerra et al. (2019),
Rezuchova et al. (2019), and Ueasilamongkol et al. (2020), for the first time, have
deviated from the idea that IP3Rs only have an anti-oncogenic potential by driving
proapoptotic Ca2+ signals to mitochondria but attributed an oncogenic potential to
ER-mitochondria Ca2+ crosstalk. In an analysis of tumor tissues, the IP3R3-protein
levels were elevated in hepatocellular carcinoma biopsies compared to healthy liver
biopsies (Guerra et al. 2019), in clear cell renal cell carcinoma kidney biopsies
compared to healthy regions (Rezuchova et al. 2019) and in cholangiocarcinoma
cancer biopsies and cancer cell lines compared to normal tissues and normal
cholangiocyte cell models (Ueasilamongkol et al. 2020). In all cases, only type
3 IP3Rs were found to be overexpressed in tumor tissues, with no changes or slight
downregulation of type 1 and type 2. In particular, IP3R3 seems to be completely
absent in normal human hepatocytes but is clearly present in biopsies from
individuals with hepatitis B virus, hepatitis C virus (HCV), non-alcoholic fatty
liver disease (NAFLD), and alcoholic liver disease (ALD), which are the four
most common predisposing factors to the development of hepatocellular carcinoma
(Guerra et al. 2019). This increase was more pronounced in the late stages of
hepatocellular carcinoma.

Notably, in cholangiocarcinoma cells, most IP3R3 is localized to the MAMs,
while in normal cholangiocytes, it resides in the ER subapical pole. In these cells,
MAM localization promotes basal respiration by increasing mitochondrial Ca2+

signaling, and thus, depletion of this channel in these cells is deleterious for nuclear
and mitochondrial functionality (Ueasilamongkol et al. 2020). In HepG2 cells,
IP3R3 upregulation promotes cell death, but its chronic overexpression can increase
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the resistance of these cells to cell death inducers, enhancing malignant cell survival
(Guerra et al. 2019).

The common key in all these cases is the extreme adaptation ability that drives
oncogenesis and malignant cell transformation. These cancer cells became addicted
to high IP3R3 levels at the MAM compartment for their survival, to maintain
sustained cell metabolism and to obtain malignant features such as increased
motility, migration, and invasion.

We want to include in this section the already mentioned ERO1-α, an extensively
studied protein due to its ability to regulate many processes. ERO1-α is particularly
enriched at the ER-mitochondria interface, controlling ER redox homeostasis and
oxidative folding and regulating Ca2+ efflux from the ER and, consequently,
mitochondrial Ca2+ accumulation (Anelli et al. 2012). ERO1-α is highly expressed
in different tumor types and is associated with a poor prognosis in breast cancer
(Kutomi et al. 2013). In fact, the expression of ERO1-α in triple-negative breast
cancer cells is correlated with that of programmed cell death-ligand 1 (PD-L1), both
at the protein and mRNA levels, via hypoxia-inducible factor 1-α (HIF-1α).
Depletion of ERO1-α led to a significant reduction in PD-L1-mediated T-cell
apoptosis, suggesting that ERO1-α has a key role in tumor-mediated
immunosuppression (Tanaka et al. 2017).

Another MAMs Ca2+- and tumor-related protein that acts at the ER level is the
receptor chaperone stress-activated chaperone sigma-1 receptor (Sig1R), which
senses ER Ca2+ concentrations and regulates cell survival. This protein could be
considered “borderline” in this section considering its mechanism of action; in fact,
Sig1R is an ER-localized protein that favors the efflux of calcium ions from the
endoplasmic reticulum and has been described as being overexpressed in breast
cancer, especially in cancer cells with metastatic potential (Gueguinou et al. 2017).
ER chaperones are important in maintaining proper intracellular Ca2+ levels, protein
folding, and the unfolded protein response (UPR) under ER stress conditions
(Bartoszewska and Collawn 2020).

Two MAM-localized chaperones that belong to the heat shock 70 kDa (HSP70)
protein family are of considerable importance in Ca2+ signaling: chaperone glucose-
regulated protein GRP75 and glucose-regulated protein 78 (GRP78, also known as
immunoglobulin heavy-chain-binding protein BiP) (Brocchieri et al. 2008; Wadhwa
et al. 2002).

GRP75 ensures the juxtaposition between IP3R and VDAC1 in the mitochondrial
outer membrane (Szabadkai et al. 2006). Its localization is mainly mitochondrial, but
it is also present at low levels in the cytoplasm, nucleus, ER, and Golgi apparatus
(Ran et al. 2000; Wadhwa et al. 1995), where it exerts many different functions from
the import of unfolded proteins into the mitochondrial matrix to modulation of
exocytosis and endocytosis (Flachbartova and Kovacech 2013; Voos and Rottgers
2002; Schneider et al. 1996; Kronidou et al. 1994; Scherer et al. 1992). Sig1Rs are
particularly enriched at the MAMs and in normal tissues form a complex with
GRP78, another MAM-localized chaperone. GRP78 can bind to misfolded proteins
and to unassembled complexes and modulates ER-associated degradation (ERAD),
which regulates the UPR (Pfaffenbach and Lee 2011; Wang et al. 2009; Little et al.
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1994). Its molecular structure displays two domains: the substrate-binding domain
(SBD), involved in binding unfolded peptides, and the nucleotide-binding domain
(NBD), which binds ATP to be hydrolyzed to obtain energy to prevent unfolded
protein aggregation at the N-terminus (Luo et al. 2006; Lindquist and Craig 1988).
GRP78, like almost all other chaperones, is useful for storing ER Ca2+ as a high-
capacity Ca2+-binding protein under physiological conditions (Hendershot 2004).

Szabadkai et al. highlighted the mechanism by which Sig1R, dissociating from
BiP, binds IP3R3 following the activation of IP3Rs. This event leads to IP3R3
stabilization at the MAMs and to an enhancement of IP3R3-mediated Ca2+ fluxes to
the mitochondria (Szabadkai et al. 2006). Although BiP is an excellent target to
consider for neuroprotective therapeutic strategies (Enogieru et al. 2019), it also
influences how tumor cells survive, proliferate, and develop chemoresistance.
During chronic ER stress conditions that involve prolonged ER Ca2+ depletion,
Sig1R localization changes from the MAMs to the peripheral ER, reducing cellular
damage and thus preventing cell death. Another mechanism of Ca2+ homeostasis
perturbation implemented by Sig1R that has direct consequences on cell
invasiveness in breast cancer has been described by Gueguinou et al. (2017).
Sig1R favors the migration of cancer cells by forming a functional molecular
platform with the calcium-activated K+ channels SK3 and ORAI calcium release-
activated calcium modulator 1 (Orai1) (Gueguinou et al. 2017) (Fig. 2).

Fig. 2 Upregulation of MAMs Ca2+ crosstalk in cancer: graphical representation of the calcium
signaling regulators involved in a cancer-related increased Ca2+ crosstalk state. See text for further
details. Ca2+, calcium; ER, endoplasmic reticulum
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4.3 Increased Mitochondrial Ca2+ Uptake

Before the identification of the molecular players forming the MCU complex, the
role of mitochondrial Ca2+ in cancer progression was simply confined to receiving
Ca2+ from the ER, thereby regulating the apoptotic response. Low ER Ca2+ release
results in reduced mitochondrial [Ca2+], mPTP inhibition, and resistance to
chemotherapeutic-induced cell death. Consistent with this view, many oncogenic
factors act at the MAMs to limit ER-mitochondria Ca2+ transfer (see the
“Downregulation of ER-mitochondria calcium crosstalk” section). However, many
mitochondrial Ca2+ channels that are responsible for favoring Ca2+ accumulation,
such as VDACs, are overexpressed, rather than reduced, in cancer (Mazure 2017).
These observations suggest that an increased intrinsic capacity of the mitochondrial
compartment to accumulate Ca2+ could contribute to sustained malignant
progression, although, at least theoretically, it predisposes cells to Ca2+-induced
cell death. The oncogenic mechanisms regulated by mitochondrial Ca2+ mainly rely
on the association between Ca2+ and the formation of mitogenic ROS, as well as pure
stimulation of mitochondrial metabolism. Ca2+ accumulation activates four
mitochondrial dehydrogenases, which in turn stimulate the respiratory chain and
hence ATP production (Denton 2009). Thus, as a consequence of increased
metabolic activity, ROS are generated inside the matrix, but they fail to trigger cell
death, probably due to the superior antioxidant defense that often distinguishes the
malignant phenotype (Gorrini et al. 2013).

The correlation between augmented mitochondrial Ca2+ entry, ROS production,
and cancer growth appears evident for tumors overexpressing the uniporter complex
pore-forming subunit MCU. Indeed, increased levels of MCU have been reported in
different tumors, including breast and hepatocellular carcinomas (Vultur et al. 2018).
In breast cancer, MCU-dependent mitochondrial Ca2+ entry is associated with ROS
overproduction and higher metastatic potential through a mechanism that involves
the downstream activation of HIF1-α transcriptional activity (Tosatto et al. 2016).
Consistent with these observations, upregulation of MCU in triple-negative breast
cancer cells promoted metastasis in an in vivo mouse model by enhancing
glycolysis, a series of neoplastic events that is counteracted by the tumor-suppressor
activity of miRNA-340 (Yu et al. 2017). Moreover, receptor-interacting protein
kinase 1 (RIPK1) binds MCU to promote Ca2+ entry and colorectal cancer
progression through stimulation of mitochondrial bioenergetics (Zeng et al. 2018).
In hepatocellular carcinomas, the Ca2+-ROS axis orchestrated by MCU resulted in
activation of metalloproteinase-2 (MMP2) (Ren et al. 2017), a zinc-dependent
endopeptidase associated with extracellular matrix degradation and metastasis
(Shay et al. 2015).

The link between Ca2+ and ROS overproduction is also relevant for the cancer-
related functions of MICU1, the principal member of the MCU complex that
regulates the gating of the channel (Kamer and Mootha 2015). Our group recently
showed that MICU1 downregulation, as a result of higher AKT activity, could
sustain cancer progression through Ca2+-dependent ROS generation (Marchi et al.
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2019a). Indeed, loss of MICU1 disinhibits MCU, leading to Ca2+ permeation under
resting (nonstimulated) conditions and increased mitochondrial ROS levels (Csordas
et al. 2013), which could ultimately result in cell death (Mallilankaraman et al.
2012a; Liu et al. 2016). This finding implies that malignant cells showing low
MICU1 levels predispose concomitant mechanisms to minimize the detrimental
effects induced by ROS. Consistent with this view, MICU1 depletion in normal
hepatocytes triggered extensive cell death, but upon pharmacological inhibition of
mPTP opening, the loss of MICU1 conferred a strong proliferative advantage
(Antony et al. 2016). Moreover, a combination of high mitochondrial Ca2+ entry
through genetic manipulation of the MCU complex and mPTP closure exacerbated
the tumorigenic potential of different cancer cells (Marchi et al. 2019b). Taken
together, these observations suggest that variations in the composition of the MCU
complex are a key event that cooperates with other oncogenic pathways to favor
cancer growth.

Further evidence that supports this scenario derives from the protumorigenic role
of MCU regulator 1 (MCUR1), which has been described as a matrix-located,
positive regulator of the uniporter complex (Mallilankaraman et al. 2012b). In
hepatocellular carcinomas, MCUR1 was strongly upregulated, and ROS production
was augmented, leading to ROS-dependent degradation of p53 and consequent
resistance to apoptosis (Ren et al. 2018). Notably, the cancer cell detoxification
capacity was also increased due to activation of nuclear factor erythroid 2-related
factor 2 (NRF2) (Jin et al. 2019), a master gene in the orchestration of the cellular
antioxidant response (Cuadrado et al. 2019). Thus, MCUR1 can regulate two cancer
hallmarks at once: Ca2+-mediated metastatic potential and resistance to apoptosis.
However, the expression of MCUR1 correlates with the permeability transition and
reduced cell survival (Chaudhuri et al. 2016b), indicating that MCUR1 oncogenic
activities might be solely due to the concomitant inhibition of the functions of the
mPTP through a superior mechanism. Nevertheless, it has been proposed that
MCUR1 could act as a complex IV assembly factor rather than as an MCU interactor
(Paupe et al. 2015). In this context, variations in mitochondrial Ca2+ uptake and ROS
levels are side products of respiratory chain defects; therefore, the active role of Ca2+

in MCUR1-mediated oncogenesis should be completely reevaluated.
Overall, these observations indicate that increased mitochondrial Ca2+ uptake acts

with other oncogenic mechanisms (e.g., mPTP inhibition or activation of antioxidant
systems) to sustain cancer growth and dissemination. The protumorigenic role of
mitochondrial Ca2+ signaling involves other pathways in addition to ROS
production and excess malignant cell bioenergetics, including the MCU-dependent
control of cytosolic Ca2+ through store-operated Ca2+ entry (SOCE). The activity of
the MCU complex sustains cytosolic Ca2+ fluxes through SOCE, which in turn
regulates cytoskeletal dynamics and cellular migration (Prudent et al. 2016).
Moreover, recent findings suggest that spontaneous mitochondrial Ca2+ oscillations
through the MCU complex are essential for mitotic entry and cell cycle progression
(Koval et al. 2019; Zhao et al. 2019), thus revealing another mechanism that could
account for the aberrant proliferation of cancer cells with an altered composition of
the MCU complex (Fig. 2).
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5 Conclusions

The importance of the multiple and complex signaling pathways generated by the
displacement of Ca2+ ions and, specifically, the Ca2+-dependent communication
between structurally and functionally interconnected intracellular organelles has
been increasingly highlighted and described, especially in recent years. Evidence
of this phenomenon is the dramatic effects on cell health that derive from
perturbation of the MAMs morphology and modification of the ER-mitochondria
tethering distance. Moreover, alterations in the MAMs protein pool and functionality
have been connected with several pathological conditions, including diabetes,
neurodegeneration, infection, and antiviral response and cancer (Pinton 2018).
Tumor cells, in fact, could modify the systems that maintain cellular Ca2+

homeostasis to promote their survival and metastasis. The crucial role of the
regulation of spatiotemporal Ca2+ signaling in the MAMs in cancer is confirmed
by evidence that different oncogenes and tumor suppressors reside at the
ER-mitochondria interface.

As shown previously, both an increase and a decrease of calcium ion exchange
between these two organelles can, in a nonexclusive way, lead to the promotion or
suppression of tumor behaviors in many tissues. This phenomenon is an indication
of how the equilibrium that rules calcium homeostasis in this subcellular
compartment is delicate, complex, and intimate. Specifically, although Ca2+

oscillations are essential at MAMs to feed mitochondrial metabolism, a persistent
increase in mitochondrial [Ca2+] can lead to cell death. In this scenario, by limiting
mitochondrial calcium uptake, many cancer cells develop resistance to death. On the
other hand, it was also highlighted that an increased mitochondrial ability to
accumulate Ca2+ supports malignant progression, by boosting mitochondrial
metabolism and sustaining mitogenic ROS production. Thus, depending on the
tumor context, MAM-localized Ca2+ signaling can exert different functions, also
according to the different oncogenic paths involved.

Several questions have yet to be answered, many aspects remain to be clarified,
and molecular pathways must be described to reach a good understanding of the
complex mechanisms that stem from calcium signaling at the MAMs, knowledge
that will be very useful in the development of novel therapeutic strategies for several
tumors.
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