

Science Signaling **7** (332), pe15. [DOI: 10.1126/scisignal.2005560] Woscholski, Hong Wu and Nicholas R. Leslie (1 July 2014) Seong-Seng Tan, Nicholas K. Tonks, Lloyd C. Trotman, Nicolas Wolff, Rudiger Alonzo H. Ross, Manuel Serrano, Vuk Stambolic, Bangyan Stiles, Akira Suzuki, Parsons, Paolo Pinton, Carmen Rivas, Rafael M. Rocha, Manuel S. Rodríguez, Prerna Malaney, Xavier Matias-Guiu, María Molina, Pier Paolo Pandolfi, Ramon Gericke, Benjamin Hopkins, Xeujun Jiang, Seung-Rock Lee, Mathias Lösche, Eickholt, Charis Eng, Frank B. Furnari, Maria-Magdalena Georgescu, Arne Ian D. Chin-Sang, Vrushank Davé, Jeroen den Hertog, Peter Devreotes, Britta J. Rafael Pulido, Suzanne J. Baker, Joao T. Barata, Arkaitz Carracedo, Victor J. Cid, ` **A Unified Nomenclature and Amino Acid Numbering for Human PTEN**

This information is current as of 2 July 2014. The following resources related to this article are available online at http://stke.sciencemag.org.

the American Association for the Advancement of Science; all rights reserved. Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005. Copyright 2008 by Science Signaling (ISSN 1937-9145) is published weekly, except the last week in December, by the American

S C IE N TIFI C CO M M U N I C ATIO N

A Unified Nomenclature and Amino Acid Numbering for Human PTEN

Rafael Pulido,^{1,2*} Suzanne J. Baker,³ Joao T. Barata,⁴ Arkaitz Carracedo,^{1,5} **Victor J. Cid, 6 Ian D. Chin-Sang, 7 Vrushank Davé, 8 Jeroen den Hertog, 9 Peter Devreotes, ¹⁰ Britta J. Eickholt, ¹¹ Charis Eng, ¹² Frank B. Furnari, 13** Maria-Magdalena Georgescu,¹⁴ Arne Gericke,¹⁵ Benjamin Hopkins,¹⁶ **Xeujun Jiang, ¹⁷ Seung-Rock Lee, ¹⁸ Mathias Lösche, ¹⁹ Prerna Malaney, 8 Xavier Matias-Guiu, ²⁰ María Molina, ⁶ Pier Paolo Pandolfi, ²¹ Ramon Parsons, ¹⁶ Paolo Pinton, ²² Carmen Rivas, ²³ Rafael M. Rocha, ²⁴ Manuel S. Rodríguez, ²⁵ Alonzo H. Ross, ²⁶ Manuel Serrano, ²⁷ Vuk Stambolic, 28 Bangyan Stiles, ²⁹ Akira Suzuki, ³⁰ Seong-Seng Tan, ³¹ Nicholas K. Tonks, 32 Lloyd C. Trotman, ³² Nicolas Wolff, ³³ Rudiger Woscholski, ³⁴ Hong Wu, 35 Nicholas R. Leslie 36**

The tumor suppressor PTEN is a major brake for cell transformation, mainly due to its phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P³] phosphatase activity that directly counteracts the oncogenicity of phosphoinositide 3-kinase (PI3K). PTEN mutations are frequent in tumors and in the germ line of patients with tumor predisposition or with neurological or cognitive disorders, which makes the PTEN gene and protein a major focus of interest in current biomedical research. After almost two decades of intense investigation on the 403-residue-long PTEN protein, a previously uncharacterized form of PTEN has been discovered that contains 173 amino-terminal extra amino acids, as a result of an alternate translation initiation site. To facilitate research in the field and to avoid ambiguities in the naming and identification of PTEN amino acids from publications and databases, we propose here a unifying nomenclature and amino acid numbering for this longer form of PTEN.

 Since the discovery in 1997 of a major tumor suppressor gene encoding a protein with tyrosine phosphatase activity—which was named PTEN (phosphatase and tensin homolog on chromosome ten), MMAC1, or TEP1 (*1*–*3*)—an outburst of publications have documented the relevance of PTEN (currently used protein name; official gene name *PTEN*) on tumor biology and human disease (*4*). The human *PTEN* gene is located at chromosome 10q23, a locus frequently deleted in human cancers. In addition, *PTEN* is a common target of point mutations in tumors, including mutations at noncoding and nontranslated regions, as well as frameshift, missense, and nonsense mutations at coding regions. Patients with PHTS (PTEN hamartoma tumor syndrome), as well as a fraction of patients with ASD (autism spectrum disorders), carry germline *PTEN* mutations. In the case of PHTS patients, this confers high risk for several types of cancer, including (but not restricted to) breast and thyroid cancer (*5*–*7*). *PTEN* mutations at coding regions distribute all along the gene, and mutations are common in exons encoding the protein tyrosine phosphatase (PTP) catalytic domain, especially exon 5 (*8*). Although a large number of *PTEN* mutations found in tumors or in PHTS patients confer total loss of function to the protein, many mutations lead to partial loss of function or have a weak effect on PTEN phosphatase activity. Moreover, most of the germline *PTEN* mutations from ASD patients do not abrogate PTEN catalysis (*9*). This makes important not only identifying the *PTEN* mutation affecting the patient but also characterization of the functional properties of the corresponding mutated PTEN protein.

PTEN is one of relatively few genes in the human genome that encodes two proteins by noncanonical alternative initiation of translation (Fig. 1A). The shorter and more abundant PTEN protein contains 403 amino acids that distribute in two major domains: a catalytic PTP domain and a membranebinding C2 domain (*10*). The recently identified and less abundant longer PTEN protein (named as PTEN-Long or $PTEN\alpha$, and here as PTEN-L) contains 173 additional aminoterminal intrinsically disordered amino acids, as a result of the usage of an alternative CUG translation initiation site upstream to the canonicalAUG sequence used to produce the shorter 403-amino-acid form (*11*–*13*).

Different groups have proposed that PTEN-L can be secreted to enter other cells (*11*) and that it may form heterodimers with PTEN and regulate mitochondrial function (*12*). Adding to the functional complexity, PTEN also homodimerizes, which may be particularly important in tumors or patients coexpressing wild-type and mutated PTEN alleles (*14*). Mutations encoding residues in the specific region of PTEN-L occur in tumors or are reported as polymorphisms (*15*– *19*), and this region may control PTEN subcellular localization and tumor suppressor activity. For example, this region includes the internalization signal for uptake of PTEN-L into acceptor cells, a postulated physiologic mechanism for tumor suppression, which potentially could be used as a novel therapeutic approach to reconstitute PTEN activity in PTEN-deficient tumors (*11*, *20*).

Abundant literature exists using the amino acid numbering from the short PTEN form, but this numbering does not fit with the amino acid numbering of PTEN-L. In addition, the numbering of the specific residues from PTEN-L (1 to 173) is already used to number different residues in PTEN, which could generate confusion. For instance, residues 1 to 22 from PTEN-L form part of a predicted secretion signal peptide, whereas residues 6 to 32 from PTEN contain an overlapping $PI(4,5)P_2$ -binding motif, nuclear localization signal, and cytoplasmic localization signal (Fig. 1A) (*21*–*23*). Thus, we propose a unified numbering to designate amino acids in PTEN and PTEN-L, so as to avoid ambiguity in the identification of PTEN residues from mutated samples or in the precise naming of PTEN residues in experimental work (Fig. 1, B and C). Our proposal is as follows:

• PTEN-Long is named PTEN-L.

• The amino acid numbering of PTEN does not change.

• The amino acid numbering of PTEN-L is followed by -L, for example, Leu¹-L, Glu 2 -L … in three-letter code or L1-L, E2-L … in single-letter code up to Val⁵⁷⁶-L or V576-L. Residues Leu¹-L to Ser²²-L form part of a predicted secretion signal and would not be present in a mature secreted form of PTEN-L protein.

• The equivalence between residues from PTEN and PTEN-L is calculated

^{*}Corresponding author. E-mail: rpulidomurillo @gmail.com

Fig. 1. A nomenclature for PTEN-L amino acid numbering. (**A**) Schematic of human PTEN and PTEN-L and the proposed numbering of amino acids. The domains common to PTEN and PTEN-L are indicated at the top, and the amino acids flanking the domains are indicated below each protein depiction. C124 (PTEN) or C297-L (PTEN-L) corresponds to the catalytic Cys. The N- and C-terminal tails from PTEN, and the PTEN-L–specific region (residues L1-L to D173-L) are intrinsically disordered regions. The black box at the N terminus of PTEN-L corresponds to a predicted secretion signal (predicted cleavage site at amino acid S22-L). PBM, PI(4,5)P₂-binding motif; NLS, nuclear localization sequence; CLS, cytoplasmic localization sequence; PDZ-BM, PDZ-binding motif. Numbers at the bottom correspond to exon numbering. (**B**) Examples of nomenclature for commonly used PTEN mutations totally or partially defective for phosphatase activity (*25*–*27*). (**C**) Examples of nomenclature for identified PTEN mutations targeting PTEN-L–specific amino acids. Loss of function has been experimentally observed for mutations A99T-L, H122Y-L, and R170G-L [(*11*); note that in reference (*11*) the amino acid numbering is one unit less]. *Reported as polymorphisms (*15*, *17*). HNSCC, head and neck squamous cell carcinoma; LBCL, large B cell lymphoma; GBM, glioblastoma multiforme. **(D)** Examples of nomenclature for PTEN dimers. Examples are provided of different combinations of PTEN and PTEN-L wild-type and mutated homodimers and heterodimers. PTEN:PTEN homodimers (*14*) and PTEN:PTEN-L heterodimers (*12*) have been demonstrated experimentally. The possibility also exists of dimers containing two mutated proteins (with the same mutation or different mutations).

by adding 173 to—or subtracting it from —the corresponding numbering. For instance, Cys^{124} (C124) from PTEN is equivalent to Cys^{297} -L (C297-L) from PTEN-L.

• Amino acid changes, either through site-directed mutagenesis or through naturally occurring mutations, are indicated as the residue and number without any extension for PTEN (for example, C124S), and with the -L extension for PTEN-L (for example, C297S-L) when the name of the protein is not immediately preceding the mutation name. Mutations commonly used in experimental work to abrogate the catalytic activity of PTEN are shown in Fig. 1B.

• Nucleotide numbering to desig-nate mutations at the PTEN-L-specific residues follows the Human Genome Variation Society (HGVS) recommendations (*24*). For instance, nucleotides -3 to -1 would encode Asp¹⁷³-L; -6

to -4 would encode Pro¹⁷²-L; up to -519 to -517 , which would encode Leu¹-L (Fig. 1C). Note that $CUG - 519$ to –517 nucleotides in the HGVSrecommended numbering for human *PTEN* gene correspond to CUG 513 to 515 nucleotides in the human *PTEN* cDNA entry (NM_000314).

• Homodimers and heterodimers of PTEN proteins are designated with the appropriate extension as needed (Fig. 1D).

• Newly identified PTEN proteins with starting amino acids distinct from Met¹ from PTEN or Leu¹-L from PTEN-L could be named alphabetically as PTEN-M, PTEN-N, and so on, or by using another appropriate capital letter, and the nomenclature for amino acids and amino acid changes would follow the rules as above for PTEN-L.

• The same rules apply to other mammalian PTEN-L protein orthologs, especially those from animal models usually handled in biomedical research.

The possibility of numbering PTEN-L–specific residues with negative numbers starting at and going upstream from the canonical AUG initiation codon of PTEN (as recommended by the HGVS for mutations that introduce in proteins new translation initiation sites) is not practical in the case of PTEN-L, because this form is produced from a natural, not mutationcreated, upstream alternative translation initiation codon (CUG) that generates a natural longer protein. The mutations affecting the PTEN-L–specific residues do not introduce new translation initiation sites, but rather change residues in PTEN-L.

We think that this unified nomenclature will facilitate to both researchers and clinicians the unambiguous identification of amino acids from PTEN and PTEN-L and aid in the description of any new forms that may be identified in the future.

1 Ikerbasque, Basque Foundation for Science, Bilbao, Spain. ²BioCruces Health Research Institute, Barakaldo, Spain. ³Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, USA. 4 Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal. ⁵CIC bioGUNE, Bizkaia Technology Park, Derio, Spain; Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain. ⁶Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRY-CIS), Madrid, Spain. ⁷Department of Biology, Queen's University, Kingston, Ontario, Canada. ⁸Morsani College of Medicine, Department of Pathology and Cell Biology, Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33620, USA. ⁹Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands, and Institute of Biology, Leiden, Leiden, Netherlands. 10Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. ¹¹Charité—Universitätsmedizin Berlin, Institute of Biochemistry and Cluster of Excellence NeuroCure, Berlin, German. ¹²Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Genetics and Genome Sciences and CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA. ¹³Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA. ¹⁴The University of Texas South-

References

- 1. D. M. Li, H. Sun, TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. *Cancer Res.* **57**, 2124–2129 (1997).
- 2. J. Li, C. Yen, D. Liaw, K. Podsypanina, S. Bose, S. I. Wang, J. Puc, C. Miliaresis, L. Rodgers, R. McCombie, S. H. Bigner, B. C. Giovanella, M. Ittmann, B. Tycko, H. Hibshoosh, M. H. Wigler, R. Parsons, PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. *Science* **275**, 1943– 1947 (1997).
- 3. P. A. Steck, M. A. Pershouse, S. A. Jasser, W. K. Yung, H. Lin, A. H. Ligon, L. A. Langford, M. L. Baumgard, T. Hattier, T. Davis, C. Frye, R. Hu, B. Swedlund, D. H. Teng, S. V. Tavtigian, Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. *Nat. Genet.* **15**, 356–362 (1997).
- 4. M. S. Song, L. Salmena, P. P. Pandolfi, The functions and regulation of the PTEN tumour suppressor. *Nat. Rev. Mol. Cell Biol.* **13**, 283–296 (2012).
- 5. M. C. Hollander, G. M. Blumenthal, P. A. Dennis, PTEN loss in the continuum of common cancers, rare syndromes and mouse models. *Nat. Rev. Cancer* **11**, 289–301 (2011).
- 6. J. Mester, C. Eng, When overgrowth bumps into cancer: The PTEN-opathies. *Am. J. Med. Genet. C. Semin. Med. Genet.* **163**, 114–121 (2013).
- 7. J. Zhou, L. F. Parada, PTEN signaling in autism spectrum disorders. *Curr. Opin. Neurobiol.* **22**, 873–879 (2012).

western Medical Center, Dallas, TX 75235, USA. ¹⁵Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA. ¹⁶Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. 17Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ¹⁸Department of Biomedical Sciences, Center for Creative Biomedical Scientists, Department of Biochemistry, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea. 19Physics Department and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh. PA 15213, USA; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. ²⁰Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Lleida, Spain; Biomedical Research Institute of Lleida (IRBLleida), Universitat de Lleida, Lleida, Spain. ²¹Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Harvard Medical School, Boston, MA 02115, USA. 22Department of Morphology, Surgery and Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy. ²³Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Madrid, Spain; Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, CIMUS, Universidade de Santiago de Compostela (USC), Instituto de Investigaciones Sanitarias (IDIS), Santiago

- 8. COSMIC (Catalogue of Somatic Mutations in Cancer), http://cancer.sanger.ac.uk/ cancergenome/projects/cosmic/.
- 9. I. Rodríguez-Escudero, M. D. Oliver, A. Andrés-Pons, M. Molina, V. J. Cid, R. Pulido, A comprehensive functional analysis of PTEN mutations: Implications in tumor- and autism-related syndromes. *Hum. Mol. Genet.* **20**, 4132–4142 (2011).
- 10. J. O. Lee, H.Yang, M. M. Georgescu, A. Di Cristofano, T. Maehama, Y. Shi, J. E. Dixon, P. Pandolfi, N. P. Pavletich, Crystal structure of the PTEN tumor suppressor: Implications for its phosphoinositide phosphatase activity and membrane association. *Cell* **99**, 323–334 (1999).
- 11. B. D. Hopkins, B. Fine, N. Steinbach, M. Dendy, Z. Rapp, J. Shaw, K. Pappas, J. S.Yu, C. Hodakoski, S. Mense, J. Klein, S. Pegno, M. L. Sulis, H. Goldstein, B. Amendolara, L. Lei, M. Maurer, J. Bruce, P. Canoll, H. Hibshoosh, R. Parsons, A secreted PTEN phosphatase that enters cells to alter signaling and survival.*Science* **341**, 399–402 (2013).
- 12. H. Liang, S. He, J.Yang, X. Jia, P. Wang, X. Chen, Z. Zhang, X. Zou, M. A. McNutt, W. H. Shen,Y.Yin, $PTFN_α$ a PTFN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism. *Cell Metab.* **19**, 836–848 (2014).
- 13. P. Malaney, V. N. Uversky, V. Davé, The PTEN Long N-tail is intrinsically disordered: Increased viability for PTEN therapy. *Mol. Biosyst.* **9**, 2877– 2888 (2013).
- 14. A. Papa, L. Wan, M. Bonora, L. Salmena, M. S. Song, R. M. Hobbs, A. Lunardi, K.Webster, C. Ng, R. H. Newton, N. Knoblauch, J. Guarnerio, K. Ito, L. A. Turka, A. H. Beck, P. Pinton, R. T. Bronson,

de Compostela, Spain. ²⁴Research Center, Antonio Prudente Foundation, Hospital A.C. Camargo; Department of Anatomic Pathology, Hospital A.C. Camargo, São Paulo, Brazil. ²⁵Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastián, Spain. ²⁶Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA. ²⁷Spanish National Cancer Research Center (CNIO), Madrid, Spain. ²⁸Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada. ²⁹Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA. ³⁰Global Centers of Excellence Program, Akita University Graduate School of Medicine, Akita, Japan. ³¹Brain Development and Regeneration Division, Florey Neuroscience Institutes, The University of Melbourne, Parkville, Victoria, Australia. 32Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. ³³Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, CNRS, Paris, France. ³⁴Department of Chemistry and Institute of Chemical Biology, Imperial College London, London, UK. ³⁵Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China. ³⁶Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK.

W. Wei, P. P. Pandolfi, Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. *Cell* **157**, 595– 610 (2014).

- 15. H. Ishihara, T. Sasaoka, S. Kagawa, S. Murakami, K. Fukui, Y. Kawagishi, K. Yamazaki, A. Sato, M. Iwata, M. Urakaze, M. Ishiki, T. Wada, S. Yaguchi, H. Tsuneki, I. Kimura, M. Kobayashi, Association of the polymorphisms in the 5′-untranslated region of PTEN gene with type 2 diabetes in a Japanese population. *FEBS Lett.* **554**, 450–454 (2003).
- 16. M. Poetsch, T. Dittberner, C. Woenckhaus, PTEN/ MMAC1 in malignant melanoma and its importance for tumor progression. *Cancer Genet. Cytogenet.* **125**, 21–26 (2001).
- 17. M. Poetsch, G. Lorenz, B. Kleist, Detection of new PTEN/MMAC1 mutations in head and neck squamous cell carcinomas with loss of chromosome 10. *Cancer Genet. Cytogenet.* **132**, 20–24 (2002).
- 18. A. Sakai, C. Thieblemont, A. Wellmann, E. S. Jaffe, M. Raffeld, PTEN gene alterations in lymphoid neoplasms. *Blood* **92**, 3410–3415 (1998).
- 19. B. Tunca, A. Bekar, G. Cecener, U. Egeli, O.Vatan, S. Tolunay, H. Kocaeli, K. Aksoy, Impact of novel PTEN mutations in Turkish patients with glioblastoma multiforme. *J. Neurooncol.* **82**, 263–269 (2007).
- 20. N. R. Leslie, V. G. Brunton, Cell biology. Where is PTEN? *Science* **341**, 355–356 (2013).
- 21. G. Denning, B. Jean-Joseph, C. Prince, D. L. Durden, P. K. Vogt, A short N-terminal sequence of PTEN controls cytoplasmic localization and is required for suppression of cell growth. *Oncogene* **26**, 3930–3940 (2007).
- 22. A. Gil, A. Andrés-Pons, E. Fernández, M. Valiente, J.Torres, J. Cervera, R. Pulido, Nuclear localization

of PTEN by a Ran-dependent mechanism enhances apoptosis: Involvement of an N-terminal nuclear localization domain and multiple nuclear exclusion motifs. *Mol. Biol. Cell* **17**, 4002–4013 (2006).

- 23. S. M. Walker, N. R. Leslie, N. M. Perera, I. H. Batty, C. P. Downes, The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. *Biochem. J.* **379**, 301–307 (2004).
- 24. HGVS, www.hgvs.org/mutnomen/recs-prot.html.
- 25. L. Davidson, H. Maccario, N. M. Perera, X. Yang, L. Spinelli, P. Tibarewal, B. Glancy, A. Gray, C. J. Weijer, C. P. Downes, N. R. Leslie, Suppression of cellular proliferation and invasion by the concerted

lipid and protein phosphatase activities of PTEN. *Oncogene* **29**, 687–697 (2010).

- 26. T. Maehama, J. E. Dixon, The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. *J. Biol. Chem.* **273**, 13375–13378 (1998).
- 27. M. P. Myers, I. Pass, I. H. Batty, J. Van der Kaay, J. P. Stolarov, B. A. Hemmings, M. H. Wigler, C. P. Downes, N. K. Tonks, The lipid phosphatase activity of PTEN is critical for its tumor supressor function. *Proc. Natl. Acad. Sci. U.S.A.* **95**, 13513– 13518 (1998).

10.1126/scisignal.2005560

Citation: R. Pulido, S. J. Baker, J. T. Barata, A. Carracedo, V. J. Cid, I. D. Chin-Sang, V. Davé, J. den Hertog, P. Devreotes, B. J. Eickholt, C. Eng, F. B. Furnari, M.-M. Georgescu, A. Gericke, B. Hopkins, X. Jiang, S.-R. Lee, M. Lösche, P. Malaney, X. Matias-Guiu, M. Molina, P. P. Pandolfi, R. Parsons, P. Pinton, C. Rivas, R. M. Rocha, M. S. Rodríguez, A. H. Ross, M. Serrano, V. Stambolic, B. Stiles, A. Suzuki, S.-S. Tan, N. K. Tonks, L. C. Trotman, N. Wolff, R. Woscholski, H. Wu, N. R. Leslie, A unified nomenclature and amino acid numbering for human PTEN. *Sci. Signal.* **7**, pe15 (2014).