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             Since the discovery in 1997 of a major tu-

mor suppressor gene encoding a protein 

with tyrosine phosphatase activity—which 

was named PTEN (phosphatase and tensin 

homolog on chromosome ten), MMAC1, 

or TEP1 (1–3)—an outburst of publications 

have documented the relevance of PTEN 

(currently used protein name; offi cial gene 

name PTEN) on tumor biology and human 

disease (4). The human PTEN gene is locat-

ed at chromosome 10q23, a locus frequently 

deleted in human cancers. In addition, PTEN 

is a common target of point mutations in tu-

mors, including mutations at noncoding and 

nontranslated regions, as well as frameshift, 

missense, and nonsense mutations at coding 

regions. Patients with PHTS (PTEN ham-

artoma tumor syndrome), as well as a frac-

tion of patients with ASD (autism spectrum 

disorders), carry germline PTEN mutations. 

In the case of PHTS patients, this confers 

high risk for several types of cancer, includ-

ing (but not restricted to) breast and thyroid 

cancer (5–7). PTEN mutations at coding re-

gions distribute all along the gene, and mu-

tations are common in exons encoding the 

protein tyrosine phosphatase (PTP) catalyt-

ic domain, especially exon 5 (8). Although 

a large number of PTEN mutations found in 

tumors or in PHTS patients confer total loss 

of function to the protein, many mutations 

lead to partial loss of function or have a 

weak effect on PTEN phosphatase activity. 

Moreover, most of the germline PTEN mu-

tations from ASD patients do not abrogate 

PTEN catalysis (9). This makes important 

not only identifying the PTEN mutation af-

fecting the patient but also characterization 

of the functional properties of the corre-

sponding mutated PTEN protein.

PTEN is one of relatively few genes in 

the human genome that encodes two pro-

teins by noncanonical alternative initiation of 

translation (Fig. 1A). The shorter and more 

abundant PTEN protein contains 403 amino 

acids that distribute in two major domains: 

a catalytic PTP domain and a membrane-

binding C2 domain (10). The recently identi-

fi ed and less abundant longer PTEN protein 

(named as PTEN-Long or PTENα, and here 

as PTEN-L) contains 173 additional amino-

terminal intrinsically disordered amino 

acids, as a result of the usage of an alternative 

CUG translation initiation site upstream to 

the canonical AUG sequence used to produce 

the shorter 403-amino-acid form (11–13). 

Different groups have proposed that 

PTEN-L can be secreted to enter other cells 

(11) and that it may form heterodimers with 

PTEN and regulate mitochondrial function 

(12). Adding to the functional complexity, 

PTEN also homodimerizes, which may be 

particularly important in tumors or patients 

coexpressing wild-type and mutated PTEN 

alleles (14). Mutations encoding residues in 

the specifi c region of PTEN-L occur in tu-

mors or are reported as polymorphisms (15–

19), and this region may control PTEN sub-

cellular localization and tumor suppressor 

activity. For example, this region includes the 

internalization signal for uptake of PTEN-L 

into acceptor cells, a postulated physiologic 

mechanism for tumor suppression, which po-

tentially could be used as a novel therapeutic 

approach to reconstitute PTEN activity in 

PTEN-defi cient tumors (11, 20).

Abundant literature exists using the 

amino acid numbering from the short PTEN 

form, but this numbering does not fi t with 

the amino acid numbering of PTEN-L. In 

addition, the numbering of the specifi c 

residues from PTEN-L (1 to 173) is already 

used to number different residues in PTEN, 

which could generate confusion. For in-

stance, residues 1 to 22 from PTEN-L form 

part of a predicted secretion signal peptide, 

whereas residues 6 to 32 from PTEN con-

tain an overlapping PI(4,5)P2-binding motif, 

nuclear localization signal, and cytoplasmic 

localization signal (Fig. 1A) (21–23). Thus, 

we propose a unifi ed numbering to desig-

nate amino acids in PTEN and PTEN-L, so 

as to avoid ambiguity in the identifi cation 

of PTEN residues from mutated samples or 

in the precise naming of PTEN residues in 

experimental work (Fig. 1, B and C). Our 

proposal is as follows:

• PTEN-Long is named PTEN-L.

• The amino acid numbering of PTEN 

does not change. 

• The amino acid numbering of PTEN-

L is followed by -L, for example, Leu1-

L, Glu2-L … in three-letter code or 

L1-L, E2-L … in single-letter code up to 

Val576-L or V576-L. Residues Leu1-L to 

Ser22-L form part of a predicted secretion 

signal and would not be present in a ma-

ture secreted form of PTEN-L protein. 

• The equivalence between residues 

from PTEN and PTEN-L is calculated 

S C I E N T I F I C  C O M M U N I C AT I O N

A Unifi ed Nomenclature and Amino Acid 
Numbering for Human PTEN

Rafael Pulido,1,2* Suzanne J. Baker,3 Joao T. Barata,4 Arkaitz Carracedo,1,5  
Victor J. Cid,6 Ian D. Chin-Sang,7 Vrushank Davé,8 Jeroen den Hertog,9 
Peter Devreotes,10 Britta J. Eickholt,11 Charis Eng,12 Frank B. Furnari,13 
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 The tumor suppressor PTEN is a major brake for cell transformation, mainly due 
to its phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] phosphatase activity 
that directly counteracts the oncogenicity of phosphoinositide 3-kinase (PI3K). 
PTEN mutations are frequent in tumors and in the germ line of patients with tu-
mor predisposition or with neurological or cognitive disorders, which makes the 
PTEN gene and protein a major focus of interest in current biomedical research. 
After almost two decades of intense investigation on the 403-residue-long PTEN 
protein, a previously uncharacterized form of PTEN has been discovered that 
contains 173 amino-terminal extra amino acids, as a result of an alternate transla-
tion initiation site. To facilitate research in the fi eld and to avoid ambiguities in the 
naming and identifi cation of PTEN amino acids from publications and databases, 
we propose here a unifying nomenclature and amino acid numbering for this 
longer form of PTEN.
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by adding 173 to—or subtracting it from

—the corresponding numbering. For 

instance, Cys124 (C124) from PTEN is 

equivalent to Cys297-L (C297-L) from 

PTEN-L. 

• Amino acid changes, either through 

site-directed mutagenesis or through 

naturally occurring mutations, are in-

dicated as the residue and number 

without any extension for PTEN (for 

example, C124S), and with the -L exten-

sion for PTEN-L (for example, C297S-

L) when the name of the protein is not 

immediately preceding the mutation 

name. Mutations commonly used in ex-

perimental work to abrogate the catalytic 

activity of PTEN are shown in Fig. 1B. 

• Nucleotide numbering to desig-na-

te mutations at the PTEN-L–specifi c 

residues follows the Human Genome 

Variation Society (HGVS) recommen-

dations (24). For instance, nucleotides 

–3 to –1 would encode Asp173-L; –6 

to –4 would encode Pro172-L; up to 

–519 to –517, which would encode 

Leu1-L (Fig. 1C). Note that CUG –519 

to –517 nucleotides in the HGVS-

recommended numbering for human 

PTEN gene correspond to CUG 513 to 

515 nucleotides in the human PTEN 

cDNA entry (NM_000314). 

• Homodimers and heterodimers of 

PTEN proteins are designated with the 

appropriate extension as needed (Fig. 

1D). 

• Newly identifi ed PTEN proteins with 

starting amino acids distinct from Met1 

from PTEN or Leu1-L from PTEN-L 

could be named alphabetically as PTEN-

M, PTEN-N, and so on, or by using an-

other appropriate capital letter, and the 

nomenclature for amino acids and amino 

acid changes would follow the rules as 

above for PTEN-L. 

• The same rules apply to other mam-

malian PTEN-L protein orthologs, espe-

cially those from animal models usually 

handled in biomedical research. 

The possibility of numbering PTEN-

L–specifi c residues with negative num-

bers starting at and going upstream from 

the canonical AUG initiation codon of 

PTEN (as recommended by the HGVS for 

mutations that introduce in proteins new 

translation initiation sites) is not practical 

in the case of PTEN-L, because this form 

is produced from a natural, not mutation-

created, upstream alternative translation ini-

tiation codon (CUG) that generates a natural 

longer protein. The mutations affecting the 

PTEN-L–specifi c residues do not introduce 

new translation initiation sites, but rather 

change residues in PTEN-L.

We think that this unifi ed nomenclature 

will facilitate to both researchers and cli-

nicians the unambiguous identifi cation of 

amino acids from PTEN and PTEN-L and 

aid in the description of any new forms that 

may be identifi ed in the future. 

PTEN-L specifc region

PBM/NLS/CLS Catalytic
motif

PDZ-BM

C-terminal tail

PTEN

PTEN-L

PTP domainN-terminal tail C2 domain

(576 amino acids)

(403 amino acids)

1 2 3 4 5 6 7 8 9

N-

N-

L1-L

M1

D173-L M174-L C297-L

C124 H185 T350 V403

H358-L T523-L V576-L

-C

-C

10q23 (exons)

A

Phosphatase
inactive

C124S

C297S-L G302E-L Y311L-L

G129E Y138L

Lipid
phosphatase

inactive

Protein
phosphatase

inactive

PTEN

PTEN-L

Protein Catalytic activity

B

-225G � A HNSCC

HNSCC

HNSCC

Melanoma

LBCL

GBM

–

-156C � T

-134G � T

-101C � T

-12A � G

-9C � T

-9C � G

Mutation

A99T-L

H122Y-L

S129I-L*

T140I-L

R170G-L

L171F-L

L171V-L*

Nucleotide Tumor type

C

Dimer nomenclatureType of dimer Examples

D

PTEN:PTENPTEN homodimer

PTEN-L homodimer

PTEN:PTEN-L

heterodimer

PTEN:PTEN

PTEN:PTEN C124S

PTEN-L:PTEN-L
PTEN-L:PTEN-L

PTEN-L:PTEN-L C297S-L

PTEN:PTEN-L

PTEN:PTEN-L

PTEN C124S:PTEN-L

PTEN:PTEN-L C297S-L

Fig. 1. A nomenclature for PTEN-L amino acid numbering. (A) Schematic of human PTEN and PTEN-L and the proposed numbering 
of amino acids. The domains common to PTEN and PTEN-L are indicated at the top, and the amino acids fl anking the domains are indi-
cated below each protein depiction. C124 (PTEN) or C297-L (PTEN-L) corresponds to the catalytic Cys. The N- and C-terminal tails from 
PTEN, and the PTEN-L–specifi c region (residues L1-L to D173-L) are intrinsically disordered regions. The black box at the N terminus of 
PTEN-L corresponds to a predicted secretion signal (predicted cleavage site at amino acid S22-L). PBM, PI(4,5)P2-binding motif; NLS, 
nuclear localization sequence; CLS, cytoplasmic localization sequence; PDZ-BM, PDZ-binding motif. Numbers at the bottom correspond to 
exon numbering. (B) Examples of nomenclature for commonly used PTEN mutations totally or partially defective for phosphatase activity 
(25–27). (C) Examples of nomenclature for identifi ed PTEN mutations targeting PTEN-L–specifi c amino acids. Loss of function has been 
experimentally observed for mutations A99T-L, H122Y-L, and R170G-L [(11); note that in reference (11) the amino acid numbering is one 
unit less]. *Reported as polymorphisms (15, 17). HNSCC, head and neck squamous cell carcinoma; LBCL, large B cell lymphoma; GBM, 
glioblastoma multiforme. (D) Examples of nomenclature for PTEN dimers. Examples are provided of different combinations of PTEN and 
PTEN-L wild-type and mutated homodimers and heterodimers. PTEN:PTEN homodimers (14) and PTEN:PTEN-L heterodimers (12) have 
been demonstrated experimentally. The possibility also exists of dimers containing two mutated proteins (with the same mutation or differ-
ent mutations). 
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