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Abstract Since 1929, when it was discovered that ATP is a
substrate for muscle contraction, the knowledge about this
purine nucleotide has been greatly expanded. Many aspects
of cell metabolism revolve around ATP production and
consumption. It is important to understand the concepts of
glucose and oxygen consumption in aerobic and anaerobic
life and to link bioenergetics with the vast amount of reac-
tions occurring within cells. ATP is universally seen as the
energy exchange factor that connects anabolism and catab-
olism but also fuels processes such as motile contraction,
phosphorylations, and active transport. It is also a signalling
molecule in the purinergic signalling mechanisms. In this
review, we will discuss all the main mechanisms of ATP
production linked to ADP phosphorylation as well the reg-
ulation of these mechanisms during stress conditions and in
connection with calcium signalling events. Recent advances
regarding ATP storage and its special significance for puri-
nergic signalling will also be reviewed.
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Introduction

Within cells, energy is provided by oxidation of “metabolic
fuels” such as carbohydrates, lipids, and proteins. It is then
used to sustain energy-dependent processes, such as the
synthesis of macromolecules, muscle contraction, active
ion transport, or thermogenesis. The oxidation process
results in free energy production that can be stored in phos-
phoanhydrine “high-energy bonds” within molecules such
as nucleoside diphosphate and nucleoside triphosphate (i.e.,
adenosine 5′ diphosphate and adenosine 5′ trisphosphate,
ADP, and ATP, respectively), phosphoenolpyruvate, carba-
moyl phosphate, 2,3-bisphosphoglycerate, and other phos-
phagens like phosphoarginine, or phosphocreatine. Among
them, ATP is the effective central link—the exchange coin
—between energy-producing and the energy-demanding
processes that effectively involve formation, hydrolysis, or
transfer of the terminal phosphate group.

In general, the main energy source for cellular metabo-
lism is glucose, which is catabolized in the three subsequent
processes—glycolysis, tricarboxylic acid cycle (TCA or
Krebs cycle), and finally oxidative phosphorylation—to
produce ATP. In the first process, when glucose is converted
into pyruvate, the amount of ATP produced is low. Subse-
quently, pyruvate is converted to acetyl coenzyme A (acetyl-
CoA) which enters the TCA cycle, enabling the production
of NADH. Finally, NADH is used by the respiratory chain
complexes to generate a proton gradient across the inner
mitochondrial membrane, necessary for the production of
large amounts of ATP by mitochondrial ATP synthase. In
addition, it should be mentioned that acetyl-CoA can be
generated also by lipid and protein catabolism.

The aim of this work is to provide an overview of the
principles governing ATP production and describe cellular
mechanisms that sense levels of ATP and regulate its
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synthesis. Metabolic alterations that promote the sustaining
of cancer progression, as well as methods for monitoring
ATP levels and production are also reviewed here.

Basic principles of ATP-producing pathways

Glycolysis

Glycolysis is a process by which glucose is partially con-
verted through a series of enzyme-catalyzed reactions into
two molecules of pyruvate. Some mammalian cell types
(erythrocytes, sperm) and tissues (brain, renal medulla) are
able to survive only (or mostly) on the energy derived from
glycolysis. The steps comprising the processes leading to
the breakdown of the six-carbon glucose into two three-
carbon pyruvate molecules can be divided into two phases:
the preparatory phase and the so-called “payoff” phase (Fig. 1).

In the first phase, glucose is phosphorylated at the hy-
droxyl group on C-6 by hexokinase (HK) generating glu-
cose 6-phosphate. This event is fundamental to “trap” the
hexose within the cell. In fact, the existence of a transporter
of phosphorylated hexose has not been reported in mamma-
lian cells. In this way, the phosphorylation of glucose shifts
the equilibrium of glucose concentration, preventing its
escape. Several types of HKs have been found, each with
specific features. In the case of HK IV (glucokinase), known
to be liver-specific, it is the insensitivity to glucose 6-
phosphate inhibition that allows its direct regulation by the
levels of glucose in the blood [1]. Recently, there has been
increased interest in the mitochondria-associated HK
(mtHK). mtHK is able to promote cell survival through an
AKT-mediated pathway. This was one of the first mecha-
nisms suggested to couple metabolism to cell fate [2] be-
cause of its ability to participate in mitochondrial dynamics
during apoptosis and especially due to its involvement in the
formation of the mitochondrial permeability transition pore.

Subsequently, glucose 6-phosphate is converted to fruc-
tose 6-phosphate by glucose 6-phosphate isomerase. This
isomerization is fundamental for the subsequent step in
which C-1 is once again phosphorylated, resulting in the
formation of fructose 1,6-bisphosphate. Aldolase is then
able to split fructose 1,6-bisphosphate into two three-
carbon molecules: dihydroxyacetone phosphate (DHAP)
and glyceraldehyde 3-phosphate (GAP). This step repre-
sents the real “lysis” phase.

Until now, the glycolytic pathway consumed ATP instead
of producing it. This should be interpreted as an investment
raising the free-energy content of the intermediates, and the
real yield of the process starts from here, with the beginning
of the second phase.

DHAP is isomerized by triosephosphate isomerase to
form a second molecule of GAP. The carbon chain of the

entire glucose is thus converted into two molecules of GAP.
Each of these molecules is oxidized and phosphorylated by
inorganic phosphate to form 1,3-bisphosphoglycerate. Dur-
ing this process, glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) uses nicotinamide adenine dinucleotide
(NAD+) as cofactor and releases NADH for each molecule
of GAP. The resulting NADH will directly feed into the
respiratory chain to propel mitochondrial ATP synthesis. It
is noteworthy that GAPDH is also able to regulate several
processes which are not part of the glycolytic pathway.
These include the regulation of apoptosis, membrane fusion,
microtubule bundling, RNA export, DNA replication, and
repair [3].

Some energy is released through the conversion of 1,3-
bisphosphoglycerate into two molecules of pyruvate by the
sequential steps performed by phosphoglycerate kinase
(PGK), phosphoglicerate mutase, enolase, and pyruvate ki-
nase. The conversions of 1,3-bisphosphoglycerate to 3-
phosphoglycerate (by PGK) and phosphoenolpyruvate to
pyruvate (by pyruvate kinase) are the steps that promote
ATP synthesis from ADP in glycolysis. The last step is also
a fundamental regulator of the whole process. Pyruvate
kinase (PK) undergoes allosteric regulation by fructose
1,6-bisphosphate that promotes PK activity and boosts the
rate of glycolysis [4]. Allosteric regulation and tissue ex-
pression characterize several isoforms of the PK enzyme,
i.e., the isoform M2, usually expressed during embryogene-
sis, has been found as a special promoter of tumorigenesis.
This isoform is characterized by a high affinity to phospho-
enolpyruvate, and it has been associated with favoring the
conversion of pyruvate to lactate instead of its entry in the
TCA cycle [5, 6].

Thus, the second phase of glycolysis provides four mol-
ecules of ATP and two of NADH per molecule of glucose,
paying the investment of the preparatory phase. The final
balance of this process is then: two molecules of ATP, two of
NADH (that could directly feed into the respiratory chain),
and two of pyruvate. The latter enters the TCA cycle and
undergoes complete oxidation in aerobic conditions.

During anaerobic conditions (such as what occurs in
muscles during a burst of extreme activity, when oxygen is
not obtained fast enough from the blood), the low oxygen
amounts do not allow the complete and efficient oxidation
of pyruvate. During these conditions, NADH (produced in
large amounts from the citric acid cycle; see next section)
cannot be reoxidized to NAD, thus limiting the activity of
GAPDH and glucose consumption. Pyruvate is then reduced
to lactate with the consumption of one NADH in a process
called lactic fermentation catalyzed by lactate dehydroge-
nase. In this way, the two molecules of NADH produced in
glycolysis are consumed in lactic fermentation to restore the
NAD reservoir, and the final balance of one glucose degra-
dation is two molecules of ATP. This condition occurs also
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in aerobic conditions in erythrocytes (that have no mito-
chondria) or in many cancer cells as was originally observed
by doctor Otto Warburg in 1930, and which led to the
widely accepted Warburg effect theory [7].

Citric acid cycle

The TCA, also known as the citric acid cycle, was elucidat-
ed by Sir Hans Krebs in 1940 when he concluded, “the
oxidation of a triose equivalent involves one complete citric
acid cycle” [8]. The “triose” deriving from glycolysis is
completely oxidized into three molecules of CO2 during a
sequence of reactions that allow the reduction of cofactors
NAD and flavin adenine nucleotide (FAD), providing ener-
gy for the respiratory chain in the form of electrons. In 1949,

it was demonstrated by Kennedy and Lehningher that the
entire cycle occurs inside mitochondria [9] (Fig. 1).

The starting material for the citric acid cycle is directly
provided by the pyruvate coming from glycolysis through
the activity of the pyruvate dehydrogenase complex. This
enzymatic complex, composed of multiple copies of the
three enzymes pyruvate dehydrogenase (E1), dihydrolipoyl
transacetylase (E2), and dihydrolipoyl dehydrogenase (E3),
oxidizes pyruvate to acetyl-CoA and CO2 in an irreversible
reaction in which the carboxyl group is removed from
pyruvate as a molecule of CO2. This reaction is strictly
related to the cycle, even if is not comprised in it. The acetyl
group introduces two carbons in each turn of the cycle; these
carbons will then leave the cycle as CO2.

The first reaction of the citric acid cycle is the condensa-
tion of one acetyl-CoA and a molecule of citrate to generate

Fig. 1 ATP management
within the cell. Schematic
representation of mechanisms
of ATP synthesis and storage
inside the cell. Glycolysis is
represented in the yellow and
blue boxes, the TCA cycle by
the green circle, and oxidative
phosphorylation in the orange
box. Reduction of pyruvate to
lactate is represented inside the
red dotted rectangle.
Hypothetical contacts between
ATP storage vesicles and
mitochondria, with preferential
ATP transfer, are shown within
the red dotted circle
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oxaloacetate and is catalyzed by citrate synthase. Citrate is
then transformed into isocitrate by aconitase through the
formation of cis-aconitate. This step is reversible and could
lead to the formation of both citrate and isocitrate. Only the
fast consumption of isocitrate by its dehydrogenase can
force the reaction to the proper direction. Isocitrate dehy-
drogenase catalyzes the first irreversible oxidation leading
to the decarboxylation of isocitrate, generating CO2 and α-
ketoglutarate. The second carbon leaves the cycle in the
following step, when the newly generated α-ketoglutarate
is immediately decarboxylated by the α-ketoglutarate dehy-
drogenase complex in a reaction similar to the pyruvate
decarboxylation. In fact, both these complexes share high
similarities in enzyme amino acid composition and in the
organization of the different subunits. Energy released from
both oxidations is used to generate NADH from NAD that
directly feeds into the respiratory chain.

The following step is catalyzed by succinyl–Coa synthe-
tase and utilizes the energy derived from the CoA removal to
phosphorylate GDP (or ADP) to GTP (or ATP). Selectivity for
the nucleotide is determined by the isozyme involved. It has
been well established that at least two isozymes of succinyl–
CoA synthetase are expressed in animal tissues [10], and the
proportion between them seems to be tissue-specific.

The succinate generated in the previous step is the four-
carbon compound that is then converted, by three sequential
reactions, to oxaloacetate to conclude the cycle. The first of
these steps is the oxidation of succinate to fumarate by
succinate dehydrogenase. This enzyme, tightly bound to
the inner mitochondrial membrane (IMM), catalyzes FAD
reduction to FADH2 that provides electrons for the respira-
tory chain. Fumarate is then hydrated by fumarate hydratase
to L-malate. It is particularly interesting that both succinate
dehydrogenase and fumarate hydratase are oncosuppressor
genes. It has been demonstrated that inactivation of these
oncosuppressors leads to the accumulation of succinate and
fumarate that spread in the cytosol and promote hypoxia-
inducible factor 1α (HIF1α) accumulation by inactivating
prolyl hydroxylase enzymes (promoter of HIF1α degrada-
tion); HIF1α in turn promotes a pseudo-hypoxic condition
that favors tumor development [11]. The last event that
completes the citric acid cycle is the oxidation of L-malate
to oxaloacetate. This reaction is performed by L-malate
dehydrogenase which induces the reduction of another mol-
ecule of NAD to NADH. The resulting molecule of oxalo-
acetate is suitable for starting another cycle through
condensation with an acetyl group.

During all these processes, only one molecule of ATP (or
GTP) is produced, but three molecules of NADH and one of
FADH2 (plus one molecule of NADH from pyruvate dehy-
drogenase), which provide electrons for respiratory chain,
are also generated and subsequently result in the production
of large amounts of ATP (discussed later).

Respiratory chain and oxidative phosphorylation

Respiratory chain comprises a series of components (com-
plexes) conducting electron transfer across the membrane
and involved in oxidative phosphorylation (OXPHOS), a
process which occurs in aerobic conditions. In eukaryotic
cells, electron transport occurs in mitochondria and chlor-
oplasts, whereas in bacteria it is carried out across the
plasma membrane. As mentioned, the electron transfer is
considered a part OXPHOS, the process through which
ADP is phosphorylated into ATP by dint of energy derived
from the oxidation of nutrients.

Four protein complexes and ATP synthase, all bound to
the IMM, as well as two shuttles are the known players of
one of the trickiest mechanisms resolved in biochemistry
(Fig. 1). The first of these complexes is the NADH/ubiqui-
none oxidoreductase (complex I) which removes electrons
from NADH (produced in the citric acid cycle) and passes
them on to the first shuttle, ubiquinone, a liposoluble cofac-
tor located within the phospholipid bilayer of the IMM.
Succinate dehydrogenase (or complex II) is another entrance
site for electrons into the respiratory chain. In this case,
electrons derived from the oxidation of succinate are passed
through FAD to ubiquinone. Once ubiquinone is reduced to
ubiquinol, it is able to pass electrons to the third complex,
ubiquinone/cytochrome c oxidoreductase. Here, electrons
are moved through several heme groups from the liposolu-
ble shuttle ubiquinone to the water-soluble shuttle
cytochrome c. Cytochrome c is a small protein (about
12.5 kDa), located in the intermembrane space (IMS), which
can accommodate one electron in its heme group. Despite its
water solubility, cytochrome c is usually bound to the
external surface of the IMM due to the interaction with the
cardiolipin [12]. This interaction (crucial in the determina-
tion of the cell fate) helps the shuttle to reach its electron
acceptor, complex IV. Cytochrome c oxidase is the last
complex of the electron transport. Electrons from cyto-
chrome c are accumulated in copper centers and passed to
oxygen through heme groups. Oxygen is then reduced to
water. This constitutes the bulk of oxygen consumption in
all aerobic life.

Electron transport through complexes I, III, and IV indu-
ces the pumping of protons from the matrix to the IMS.
Specifically, for every two electrons coming from one mol-
ecule of NADH, four H+ are moved by complex I, four by
complex III, and two by complex IV. The second respiratory
complex does not generate any proton movement [13]. The
respiratory chain in active mitochondria generates a large
difference in [H+] across the IMM, resulting in the genera-
tion of an electrical potential (about −180 to −200 mV) and
variation in the pH of about 0.75. A constant proton motive
force drives the ATP synthesis through the last step of
OXPHOS, the ATP synthase. Understanding the activity
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and organization of this enzyme won researchers more than
one Nobel Prize. First, Peter Mitchell in 1978 received his
prize for the formulation of the chemiosmotic theory. Ini-
tially, he hypothesized how an enzymatic activity could at
the same time involve ion transport (proton transport
through the IMM) and a chemical reaction (ATP phosphor-
ylation). Almost two decades later, in 1997, the Nobel Prize
was awarded to Paul Boyer and John Walker who elucidated
the mechanism of action of ATP synthase, here briefly
reviewed. ATP synthase could be divided in two main
components: F0 that allows the channelling of protons and
F1 that catalyzes ATP phosphorylation. The F0 is embedded
in the IMM, while the F1 resides in the mitochondrial matrix
and is bound to the F0 through a γ subunit (which drives
conformational changes) and a b2δ dimer (that holds F0 and
F1 together). The protons flow from the intermembrane
space to the matrix through the F0 inducing its rotation;
the movement is transmitted from the γ subunit to the F1
causing conformational rearrangements. The F1 has a tri-
meric structure consisting of αβ dimers. This structure
allows three different conformational states which is able
to bind ADP + Pi, ATP, or remain unbound. The sequential
changes are linked to the binding of substrates, phosphory-
lation, and release of ATP. The three available dimers are
never in the same conformational state, and, what is more,
the conformational changes in one dimer drive rearrange-
ments in the other (for a more detailed explanation, refer to
[14]). It has been calculated that, for the synthesis of one
ATP molecule, four protons are required (three for the ATP
synthase rearrangements and one for ATP, ADP, and Pi
transport [15]). Once synthesized, ATP can locate inside
mitochondrial matrix or be transported into the IMS by the
nucleotide exchanger adenine nucleotide translocase (ANT)
which passively exchanges ATP with ADP. Once in the
IMS, ATP can freely pass the OMM through the voltage-
dependent anion channel (VDAC).

ATP production is strongly regulated
upon environmental stresses

Phosphorylation of ATP is strongly modulated by environ-
mental stresses, such as hypoxia or heat shock. It has also
been demonstrated, both in vitro and in vivo, that intracel-
lular ATP levels are implicated in the regulation of funda-
mental cellular processes, such as growth, development, and
death/survival decisions.

In 1964, Daniel Atkinson [16] proposed the energy-
charge hypothesis, which stated that regulatory enzymes
involved in fundamental pathways for a correct develop-
ment and survival of the cell, would be sensitive to the
energy charge, that is, to ATP levels. To confirm this hy-
pothesis, a series of studies on enzymes was conducted. The

results have demonstrated how these metabolic enzymes are
indeed regulated by adenine nucleotides and, more specifi-
cally, that they are allosterically activated by AMP and
inhibited by ATP (Fig. 1).

With these observations in mind (that show the primary
importance in maintaining appropriate ratios of ATP/ADP
and ATP/AMP), it is possible to assume the presence of a
protein-kinase cascade (Fig. 2) that operates in accordance
with a sophisticated mechanism, fundamentally based on
cellular levels of ATP [17].

A key molecular player involved in the maintenance of
these biological processes is 5′ AMP-activated protein ki-
nase (AMPK). This Ser/Thr protein kinase is sensitive to the
cellular AMP/ATP ratio. This enzyme was shown to be
activated by AMP and able to activate/inactivate proteins
involved in cholesterol and lipid synthesis [18]. Generally,
the activity of AMPK is related to the phosphorylation of
several downstream substrates in response to a situation of
metabolic and energy crisis due to an alteration of ATP
synthesis, with subsequent regulation of gene expression.
The overall effect of this activation is extra work for ATP-
generating pathways (such as glycolysis and fatty acid ox-
idation), and thus, it causes the inhibition of anabolic (ATP-
utilizing) processes like protein and lipid synthesis. AMPK
is a heterotrimeric complex composed of catalytic α-
subunits and regulatory β- and γ-subunits [19]. The α-
subunits contain the catalytic domain in the N terminus
and the domain necessary for the interaction with the β-
and γ-subunits in the C terminus. It has been demonstrated
that Thr172 is the major regulatory phosphorylation site of
the α-subunits and that it is essential for the catalytic activity
[20]. The β-subunit accounts for a region targeting AMPK
to glycogen particles [21], and the γ-subunit is committed to
the detection of the AMP/ATP ratio through four particular
domains of cystathionine β-synthase [22]. It has been sug-
gested that an elevation in the AMP/ATP ratio due to a
decrease in intracellular ATP levels (with consequent in-
crease of AMP) induces a conformational change in the
AMPK complex, improving the ability of the α-subunit to
serve as a substrate for an upstream kinase. During the last
decade, two of the newly identified kinases have been
shown to phosphorylate the α-subunit at the crucial
Thr172/LKB1 (liver kinase B1) and calmodulin-dependent
protein kinase kinase (CaMKK) [23].

LKB1, a tumor suppressor with an evident role in stress
and damage response, was initially discovered as a serine–
threonine kinase mutated in Peutz–Jeghers syndrome [24].
This kinase regulates cell growth and cell death, and these
features have been correlated with the tumor suppressor
protein p53, which is known to physically interact with it.
Less is known about other LKB1 substrates; recently, it has
been shown that AMPK is one of its best-characterized
substrates. Originally, during investigations aimed at
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clarifying the mechanisms of activation in yeast AMPK
ortholog snf1, three different kinases were identified as
upstream Pak1, Tos3, and Elm1. Subsequent works found
that LKB1 was the Ser/Thr protein kinase with the kinase
domain closest to the snf1 upstream kinase, confirming the
existence of an LKB1–AMPK pathway. Different biochem-
ical assays have shown the ability of LKB1 to phosphorylate
the α-subunit of AMPK in Thr172 [25, 26].

During studies in LKB1-deficient mice, an alternative
upstream kinase that activates AMPK by phosphorylation
in Thr172 on the α-subunit was discovered. It was demon-
strated that the CaMKK, particularly the β-isoform, phos-
phorylates and activates AMPK [27]. This study suggests a
second signalling pathway (apart from the one mediated by
LKB1 and changes in the cellular AMP/ATP ratio), capable
of activating AMPK. In this pathway, an increase in cyto-
solic Ca2+ drives the activation of CaMKK which acts on
AMPK, promoting its phosphorylation and consequent ac-
tivation. In order to confirm this activity, a CaMKK inhib-
itor was applied which antagonized the AMPK activation.
Additionally, the concomitant use of the Ca2+ ionophore
A23187 (able to activate AMPK) and siRNAs selectively
targeted at α- and β-isoforms of CaMKK suggested that
CaMKKβ is the principal candidate for the phosphorylation
of AMPK. The rise of cellular Ca2+ is accompanied by an
increased demand for ATP, due to the activation of pumps

that equilibrate cytosolic ions. The consequent activation of
AMPK by CaMKK increases glucose uptake by GLUT1
and, together with the effects of Ca2+ on mitochondrial
dehydrogenases (discussed later), leads to the generation
of ATP.

Once activated, AMPK acts to conserve energy by direct-
ing metabolism towards ATP production while inhibiting
pathways that utilize ATP. Furthermore, AMPK is one of
the major cellular energy sensors, also able to regulate a
correct metabolic homeostasis. This kinase is involved in
the preservation of energy in different cellular events, such
as metabolic syndrome, a combination of metabolic disor-
ders that increase the risk of cardiovascular disease and
diabetes [28]. Recently, great attention has been paid to the
possible link between AMPK and cancer. Indeed, it has
already been demonstrated that this kinase plays an impor-
tant role in mediating tumorigenic effects of the tumor
suppressor LKB1.

One major downstream target of AMPK is mammalian
target of rapamycin (mTOR), a member of the phosphatidy-
linositol 3-kinase protein family recognized as a central
regulator in an array of diverse and vital cellular processes
such as: regulation of growth through maintenance of the
appropriate balance between anabolic processes (i.e., mac-
romolecular synthesis and nutrient storage), as well as cat-
abolic processes (i.e., through regulation of autophagy when

Fig. 2 Protein-kinase cascade involved in fundamental pathways sen-
sitive to the energy charge. The activity of AMPK is related to the
phosphorylation of several downstream substrates capable of altering
gene and protein expression, in response to a situation of metabolic and
energy crisis due to a deep alteration in ATP synthesis and production.
AMPK is a heterotrimeric complex composed of catalytic α-subunits
and regulatory β- and γ-subunits, where the major regulatory

phosphorylation site is Thr172, phosphorylated by LKB1 (Liver Kinase
B1) and CaMKK (calmodulin-dependent protein kinase kinase), re-
spectively. AMPK acts to conserve energy by directing metabolism
towards ATP production while inhibiting pathways that utilize ATP. Its
major downstream targets are mTOR (mammalian target of rapamycin)
and p53, modulating autophagy and cell cycle regulation processes in
order to restore the intracellular energy balance
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large parts of cytoplasm and organelles undergo degrada-
tions and recycling) [29]. The signalling components up-
stream and downstream of mTOR are frequently altered in a
wide variety of human tumors. Mutations in several tumor
suppressor genes (like TSC1, TSC2, LKB1, PTEN, VHL,
NF1, and PKD1) trigger the development of different dis-
eases [30]. In the conditions of glucose deprivation and
hypoxia, ATP levels are lowered, which results in the inhi-
bition of mTOR, in a mechanism that sees also an increase
in the AMP/ATP ratio and therefore the activation of
AMPK. Activated AMPK can directly phosphorylate tuber-
ous sclerosis protein 2 (TSC2), which in turn suppresses the
activity of the small Ras homolog enriched in brain GTPase
(RHEB). Inactive RHEB leads to the inactivation of mTOR,
which is an essential mechanism for cell survival under
glucose deprivation conditions [30].

However, judging from the observations that the relation-
ship between AMPK and mTOR remains conserved in all
eukaryotes (including organisms lacking TSC2 orthologs
such as Caenorhabditis elegans and Saccharomyces cerevi-
siae) and the fact that cells lacking TSC2 remain responsive
to energy stress, it is possible to speculate about the pres-
ence of additional AMPK substrates capable of modulating
mTOR activity. Recently, a critical mTOR binding partner
was identified and named Raptor (regulatory associated
protein of mTOR) [31]. The phosphorylation of Raptor by
AMPK is required for the suppression of mTOR activity by
energy stress. The presence of a direct regulation of mTOR
mediated by AMPK suggests a direct control of the “fuel
gauge” kinase AMPK in the regulation of mTOR-dependent
cellular processes. This discovery also opens the possibility
of employing an AMPK agonist to treat tumors exhibiting
hyperactivation of mTOR [32].

In physiological conditions, the most important tumor
suppressor gene, p53, is rapidly ubiquinated and degraded.
However, phosphorylation of p53 by AMPK stabilizes the
protein with a consequent promotion of cell cycle arrest and
anti-tumorigenic effect mediated by the expression of p21
that arrests the cell cycle in G1 and G2. One can also
consider the AMPK-p53 connection as a possible cell cycle
checkpoint in a situation of low nutrient availability and
energy stress. What is more, it is tempting to envision the
use of AMPK-activators as anticancer drugs [33].

Several reports [34–36] have shown how p53 inhibits
mTOR to repress cell growth and proliferation beyond
genotoxic stress. Furthermore, p53 enhances the phosphor-
ylation of AMPKα subunit, promoting AMPK activity
and, as was mentioned above, repressing the activity of
mTOR.

Upon DNA damage and oxidative stress, p53 pro-
motes the expression of Sestrin-1 and Sestrin-2, which
in turn promote AMPK activation with the final goal of
negatively regulating cell growth through the mTOR

pathway, supporting further the role of AMPK in cancer
development [34].

The ATP/ADP ratio regulation of metabolism occurs also
within the mitochondrial matrix. It has already been
reported that the addition of ADP to isolated mitochondria
results in an increase of mitochondrial respiration (state 3)
which is maintained for a short period of time, after which it
is inhibited (state 4). This effect was clarified in 1997, with
experiments that demonstrated that ATP produced in state 3
is able to bind to complex IV, allosterically inhibiting respi-
ration [37]. Three years later, it was shown that, in freshly
isolated mitochondria, ATP was able to induce a cAMP-
dependent phosphorylation of subunits II and Vb of cyto-
chrome c mediated by protein kinase A (PKA). Moreover,
these phosphorylated sites (which seem to be facing the
“cytosolic” side of the IMM) can be dephosphorylated in a
calcium-dependent manner by protein phosphatase 1 [38].
Another phosphorylation site was identified and published
in the work of Lee et al. [39]. The authors described how
complex IV inhibition could be mediated by another cAMP-
dependent activity, this time, in subunit I. On the other hand,
a PKA phosphorylation site was recently found on the
matrix side of subunit IV. In this case, by dint of phosphor-
ylation site prediction and mutagenesis techniques, it was
not only possible to hypothesize about the amino acid res-
idue responsible for ATP allosteric inhibition, but it was also
demonstrated that the phosphorylation in that site blocks
allosteric inhibition induced by ATP [40].

These reports suggest that a complicated network of
phosphorylation-dependent regulatory processes occur at
the level of respiratory complex IV. Elucidation of these
mechanisms will facilitate the understanding of the connec-
tion between metabolic states within the cell and its ability
to adapt to stress conditions.

Calcium-dependent regulation

New experimental tools introduced in the last years have
enormously expanded our ability to monitor the dynamics of
mitochondrial events in the living cell. These organelles
have been recognized as fascinating structures, involved in
many aspects of mammalian physiology and pathophysiol-
ogy. They play subtle roles in glucose homeostasis [41, 42],
act as oxygen-sensors in the regulation of respiration [43,
44], and are pivotal in the pathways to both necrotic and
apoptotic cell death [45]. Mitochondria also take up calci-
um, impacting the spatiotemporal dynamics of intracellular
calcium signals [46], but their central and ubiquitous task is
clearly the production of ATP.

Using a recombinant ATP indicator (a mitochondria-
targeted chimera of the photoprotein luciferase), it was
demonstrated that an increase in mitochondrial ATP levels
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ran parallel to an increase in mitochondrial calcium concen-
tration ([Ca2+]m) evoked in stimulated cells. Moreover, the
[ATP] increase was prevented by the use of Ca2+ chelators,
such as the 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-
acetic acid [47]. Recent work, together with previous con-
siderations which emerged in the 1970s and 1980s [50, 52,
53], have revealed a considerable amount of data regarding
the relationship of Ca2+ regulation to mitochondrial ATP
production.

Mitochondria can accumulate Ca2+ in a respiration-
dependent manner via the ruthenium red-sensitive Ca2+

uniporter (mCU) [48, 49], or by RaM (rapid mode of Ca2+

uptake [50]), when mitochondria are predominantly found
in close interaction with endoplasmic reticulum membranes
[51]. The electrochemical gradient, generated by the com-
bination of the mitochondrial inner membrane potential and
the low concentration of Ca2+ in the matrix, serves as the
energy source for both the Ca2+-transporters. Mitochondrial
calcium homeostasis is maintained by different efflux car-
riers: the Na+/Ca2+ exchanger (mNCX) which exchanges
one Ca2+ for three Na+ ions [52], Ca2+-proton exchanger
(that release calcium following the addition of acid with
efflux stoichiometry of 2 protons/1 Ca2+ [53]) and the
mitochondrial permeability transition pore, a multicomplex
pore involved in the apoptotic response [54]. Accrued data
on the mitochondrial calcium accumulation machinery has
had an enormous impact on our understanding of the major
function of this organelle, ATP production.

The first results were obtained by Denton and McCor-
mack, who showed that free intramitochondrial Ca2+-acti-
vated mitochondrial dehydrogenases, leading to increased
NADH and thus ATP production [55, 56]. The regulation of
oxidative phosphorylation by Ca2+ appears extremely com-
plex, but different targets have already emerged: dehydroge-
nase activity, F1–F0–ATPase and mitochondrial substrate-
transport (Fig. 3).

Three mitochondrial dehydrogenases are sensitive to Ca2+:
pyruvate dehydrogenase (PDH, [55]), isocitrate dehydroge-
nase (ICDH, [57]), and α-ketoglutarate dehydrogenase
(KDH, [58]). All three exhibit different calcium-dependent
mechanisms, suggesting that the origins or the specific signal-
ling of their activation are very diverse. PDH is activated by
dephosphorylation via a calcium-dependent phosphatase [59].
Differently, ICDH and KDH directly bind calcium ions,
resulting in alterations in the kinetics of both substrates
and inhibitory metabolites [60, 61]. However, several stud-
ies have demonstrated that these Ca2+-dependent dehydro-
genases are not the only molecular route for the Ca2+-
dependent ATP synthase. The first suggestion came from
Harris, showing that F1–F0–ATPase might be directly
affected by Ca2+ in heart cells [62]. Balaban successively
confirmed this in vivo on canine hearts [63]. Territo et al.
demonstrated that Ca2+ directly actives F1–F0–ATPase

with a Km of 200 nM, increasing the velocity of ATP
production [64]. No molecular mechanism as to how Ca2+

may activate the ATPase has been described until now,
although the involvement of calcium-dependent proteins or
post-translational modifications that may regulate ATPase
have been proposed to induce the change [65–69]. Also,
calcium-regulated mitochondrial carriers play an interesting
role in this complex scenery. Aralar and citrin are aspar-
tate/glutamate carriers (AGC) present in excitable and non-
excitable cells, respectively. Both were shown to possess
EF-hand-based regulatory sites in the portion of the mol-
ecule exposed in the IMS [70]; both are involved in the
malate–aspartate NADH shuttle across the IMM, equili-
brating the NAD/NADH ratio from cytosol to matrix.
These carriers are the target of cytosolic calcium and
could alter mitochondrial metabolism without entering the
matrix. Interestingly, overexpression of wild-type AGCs
(but not mutants lacking the Ca2+-binding sites) enhanced
the upregulation of ATP production upon cell stimulation,
confirming that different Ca2+-effectors (enzymes, carriers)
located in different mitochondrial fractions (matrix, inter-
membrane space) may cooperate in ATP-producing capac-
ity [71]. Thus, a [Ca2+]m increase, with a simultaneous
[Ca2+]c rise, evoked by extracellular stimuli, could convey
activation signals to the organelle, in order to boost ATP
synthase. This is partially sustained in experiments in
beating hearts from guinea-pig perfused with 10 μM
RU360 (which inhibits Ca2+-uptake into mitochondria),
where no effect on contraction was observed [72]. This ob-
servation implies that ATP levels were maintained even
though no increase in [Ca2+]m should have occurred, suggest-
ing thus that increase in [Ca2+]mmay play a role under specific
conditions of increased workload or signalling. Whereas un-
der basal conditions there are alternative mechanisms cou-
pling ATP supply to demand, this balanced activation of
oxidative phosphorylation by Ca2+ plays a pivotal role in
balancing the rate of ATP production in the cell. It has been
shown in some cell types that, during prolonged cytosolic
calcium elevations, the uniporter exhibits inactivation, reduc-
ing its Ca2+-uptake capacity [73, 74]. A possible explanation
for this was proposed by Moreau, where the Ca2+-dependent
inactivation was mediated by acidification of mitochondrial
pH [75]. This suggests a molecular mechanism whereby ATP
synthesis can regulate mitochondrial calcium signalling:
through the H+ flow, generated during ATP production, by
ATPase into the matrix. This mechanism could represent not
only the critical step that prevents mitochondrial Ca2+ over-
load, but it could also be a trigger for apoptosis too.

Recently, it was proposed that constitutive low-level
InsP3R-mediated Ca2+ release is essential for maintaining
optimal conditions for mitochondrial bioenergetics [76].
This ongoing Ca2+ transfer from ER to mitochondria sup-
ports oxidative phosphorylation, at least in part by providing
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sufficient reducing equivalents. The reduction in mitochon-
drial Ca2+-uptake results in reduced ATP production and
activation of AMPK, which promotes autophagy as a pro-
survival mechanism. An intriguing prospect in inter-
organelle communication was also disclosed by the studies
of Kaasik et al. [77], extending the importance of ER/SR–
mitochondria contacts as examples of metabolic crosstalk
between these organelles. Moreover, it was observed in CK
knockout mice that a structural reorganization of mitochon-
dria, myofilaments, and SR leads to the development of
more intimate contacts between these organelles and func-
tional units ensuring direct ATP supply [78].

It seems clear that the relationships between Ca2+ and
ATP vary significantly in different cell or tissue types,
although similar mechanisms are probably involved. These
variations seem to be promoted by a different spatial orga-
nisation of mitochondria (close interaction between ER and
mitochondria membranes), temporal demands in ATP pro-
duction, mitochondrial Ca2+ concentrations, mitochondrial
pH, and redox state that occur in different and specific
contexts (Fig. 3).

ATP storage

ATP usually reaches high concentrations within cells, in the
millimolar range. Nonetheless, because of the high rate of
ATP-dependent processes, together with its low stability in

water, ATP content could quickly be depleted if it were not
immediately replenished by glycolysis and oxidative phos-
phorylation. Hence, ATP cannot be stored easily within
cells, and the storage of carbon sources for ATP production
(such as triglycerides or glycogen) is the best choice for
energy maintenance. Surprisingly, in 1974, Dowdall [79]
and co-workers found a considerable amount of ATP (to-
gether with acetylcholine) in cholinergic vesicles from the
electric organ of Torpedo marmorata. Several similar find-
ings were made in subsequent years in other mammalian
and non-mammalian species. The common feature is that
ATP can be stored in large dense core vesicles together with
neurotransmitters. It was found co-stored with acetylcholine
in guinea pig cortex, calf superior cervical ganglion, and
motor nerve terminals of rat diaphragm [76]; with noradren-
aline, it was found in human blood vessels, smooth muscles,
and endothelial cells [80]; it was also found in adrenal
chromaffin cells together with serotonin, with neuropeptide
Y and glutamate in astrocytes, and with dopamine in
neuron-differentiated PC12 [81–84]. Moreover, in other cell
types in the nervous tissue, particularly astrocytes, ATP was
found also in small synaptic-like vesicles [85].

The co-storage of ATP with neurotransmitters support the
idea that ATP is a fundamental mediator of purinergic neu-
rotransmission in sympathetic and parasympathetic nerves,
where it can induce several purinergic responses (i.e., con-
trol of autonomic functions, neural glial interactions, pain
and vessel tone control). In fact, this storage is a selective

Fig. 3 Mitochondrial Ca2+ dynamics and stimulation of the TCA cycle
and oxidative phosphorylation during mitochondrial ATP production.
The direct transfer of Ca2+ from the ER to mitochondria supports
oxidative phosphorylation during mitochondrial ATP production. This
is an example of metabolic crosstalk between these organelles and
characterizes the importance of ER/SR–mitochondria contacts. Sche-
matic mitochondrial Ca2+ uptake and efflux mechanisms are displayed
in grey. All enzymes and protein complexes stimulated or influenced

by Ca2+ during mitochondrial ATP production are displayed in red.
(MCU, mitochondrial calcium uniporter; mRyR, mitochondrial ryano-
dine receptor; RAM, rapid mode; VDAC, voltage-dependent anionic
channel; PTP, permeability transition pore; ANT, adenine nucleotide
transporter; PDH, pyruvate dehydrogenase; ICDH, isocitrate dehydro-
genase; KDH, a-ketogluterate dehydrogenase; AGC1/2, aralar and cit-
rin aspartate/glutamate carriers; MAM, mitochondrial–endoplasmic
reticulum associated membranes)
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form of exocytotic signalling in which ATP participates as a
neurotransmitter. The release of ATP from vesicular stores is
controlled by cytoplasmic inositol triphosphate 3 (IP3)-me-
diated calcium signalling, as well as other common exocy-
tosis mechanisms [86]. ATP itself is then able to induce IP3-
mediated calcium release in several cell types [87, 88]. In
astrocytes, it was proposed that ATP could also be indepen-
dently stored in vesicles that respond to a selected control
mechanism, independent from any other neurotransmitter
[81]. It was also demonstrated that ATP exocytosis is able
to promote calcium waves across astrocyte layers and in
communication with other cell types, such as Muller cells
[89], in a way independent from tight junction. Stored ATP
exocytosis occurs by different mechanisms. In HUVEC
cells, it was demonstrated that ATP exocytosis could be
induced by sheer stress [90]. In these conditions, a rapid
release of all vesicles is observed, but this is partially
blocked by extracellular calcium removal, suggesting that
calcium-independent mechanisms could exist. Similar ATP
release could be induced also in astrocytes [81] and glial
cells of the retina [89].

The ATP concentration within these stores appears sig-
nificantly different, dependent on the cell type, but it can
reach high levels of around 150–200 mM [91]. Also, other
nucleotides were found to be co-compartmentalized, espe-
cially GTP, UTP, and ADP, suggesting that the transport
inside vesicles is not directly due to a nucleotide exchanger.
Moreover, these activities of ATP transport were originally
described by Bankston and Guidotti as a membrane
potential-dependent activity that requires positive potential
inside the vesicles [83]; it was only recently, however, that a
vesicular nucleoside transporter was identified [92].

An isoform of the SLC17 phosphate transporter family,
SLC17A9, was found to be expressed in all mouse organs
but especially in adrenal glands and the thyroid. Through
electron microscopy, the protein was found to associate with
chromaffin granules in the medulla, and, if bound to lip-
osomes, it was able to induce radioactive ATP uptake only
after previous induction of a positive membrane potential
inside. Even if specific mechanisms for the homeostasis of
ATP storage are identified in detail (such as vesicle import and
exocytosis), the source of ATP and its links to cellular metab-
olism remain unclear. Not much data have been published
about the contact between catecholamine-storage vesicles and
mitochondria in the adrenal medulla of rats. As previously
mentioned, mitochondria can be found in close connection
with other organelles, favoring the exchange of ions and other
molecules. When in contact with the endoplasmic reticulum,
for example, mitochondria favor ATP delivery to the SERCA
and calcium pumping activity in the ER lumen [93]. One can
imagine a similar mechanism occurring in vesicles containing
ATP, in order to maintain an elevated ATP concentration.
More than one report supports this idea, showing how the

import of ATP into vesicles could be totally or partially
inhibited by the ANT blocker atractyloside [83, 92, 94]. This
protein is located in the IMM, in close proximity to the ATP
synthase and exchanges ATP with ADP between the mito-
chondrial matrix and the IMS.

These observations suggest that a preferential ATP deliv-
ery route between mitochondria and ATP-containing
vesicles could exist, even if it has not been properly dem-
onstrated yet. If verified, this could provide a direct connec-
tion between cell metabolism and ATP storage that could be
extended to the whole purinergic signalling mediated by
ATP exocytosis (Fig. 1).

Recently, other reports suggest a link between extracellular
ATP and mitochondria. This is the case of the previously
mentioned ATP synthase. It has been reported how this com-
plex could localize to the plasma membrane in endothelial
cells, hepatocytes, adipocytes, as well as some tumor cells.
Especially, it appears to be concentrated in structure called
caveole. At this site, ATP synthase has been suggested to
promote ATP synthesis and also as proton channels and ligand
receptor providing a role for numerous biological processes
including cell malignancy [95]. Specificity for ATP synthesis
reaction has been suggested by monitoring extracellular ATP
levels in presence of oligomycin or other selective inhibitors;
nonetheless, some authors suggest that the presence of others
nucleotide-converting enzymes such as adeylate kinase (AK)
or nucleoside diphosphate kinase (NDPK) could generate
artifacts leading to a misinterpretation of a role for ATP
synthase on plasma membrane (for a more detailed review,
see [96]). The mechanism of translocation of ATP synthase to
plasma membrane has still to be elucidated, but more than one
author provides evidences suggesting that it could translocate
directly from IMM [97, 98].

The concomitant presence of ectopic ATP synthase, AK,
and NDPK focuses attention on the concept of near-
equilibrium and phosphotransfer networks [99]. This con-
cept is based on the idea that the bulk of ATP, synthesized
within mitochondrial cristae, does not easily diffuse to the
whole cell. It has been then hypothesized that sequential
reactions (specially catalyzed by AK, NDPK, and creatine
kinase) allow a facilitated transport of phosphoryl groups
between adenine nucleotides resulting in virtually more
efficient ATP diffusion [100]. Recently, it has been reviewed
the possibility that the same preferential reaction network
could exist on the plasma membrane surface allowing the
generation of a pericellular layer of adenosine nucleotides
[96]. In this optic, it could be imagined that vesicular trans-
port or ATP synthase act as source of ATP while ectopic AK
or NDPK exert a phosphotransfer network that allow main-
tenance of ATP in the extracellular space. It would be
interesting to investigate if similar networks exist within
ATP storage vesicles and if they are involved in preferential
ATP storage or ATP level maintenance.
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Extracellular adenosine nucleotides are able to induce
activation of AMPK through a P2Y-dependent pathway.
This phenomenon has been already shown in HUVEC cells,
elicited by ATP and ADP, and astrocytes after stimulation
with ADP only [101, 102]. In the latter, authors also shown
how ADP exposure for 24 h induced an AMPK-dependent
increase of mitochondrial membrane potential and intracel-
lular ATP synthesis. These data suggest a possible feedback
mechanism by which extracellular adenosine nucleotides are
able to promote ATP generation, possibly to increase levels
of viable ATP and sustain the purinergic signal execution.

Finally, the common co-presence with adenosine nucleoti-
des of other molecules during purinergic signals should be
mentioned. ATP, especially, is often stored and released in the
co-presence of NAD+ [85, 103]. For a long time, extracellular
NAD+ has been addressed as a key signal of cell lysis with
potent activation properties on several immune system cells
[104–106] and as an inducer of intracellular calcium signals
[107]. Its regulated co-storage and co-release with ATP lets us
propose a more refined role in purinergic signaling, and ATP
and NAD+, especially, appear to show synergistic activity by
activation of several members of the purinergic receptor family,
such as P2X7 and P2Y [108]. This extracellular cooperation
appear surprising if considering the fact that NAD+, as ATP, in
its intracellular location has a metabolic activity (see previews
chapters); nonetheless, in contrast to ATP, clear studies about
extracellular NAD+ and regulation of metabolism (or even
during its cooperation with ATP) are still lacking. It should be
considered that the P2X7 receptor has been widely character-
ized has a regulator of inflammasome complex, especially
during ATP stimulation (for review, see [109]) and that, recent-
ly, the NLRP3 inflammasome components have been found
located on mitochondria [110] where, apparently, they can
sense mitochondrial dysfunctions through ROS production.
These observations suggest that the purinergic signals mediated
by ATP and NAD+ can sense the mitochondria and possibly
verify the whole metabolic status of the cell.

The link between inflammasome and metabolism could
gain a special meaning. In fact, NLRP3 inflammasome
could be activated by necrosis leading to the sterile inflam-
mation condition [111, 112]. Moreover, it is well known that
extracellular ATP is able to induce either apoptosis or ne-
crosis [113–115] and that intracellular ATP is involved in
the main switch between necrosis and apoptosis [116]. It
could be then imagined that, during purinergic activation,
inflammasome senses mitochondria and participates in the
decision between necrotic or apoptotic cell death.

Methods for measurements of intracellular ATP

Several soluble coupled multi-enzyme systems for adenine
nucleotide assays (AMP, ADP, and ATP) were based on the

reactions catalyzed by adenylate kinase, pyruvate kinase,
and firefly luciferase [117]. At present, the best method to
measure intracellular ATP is using the firefly luciferase, an
enzyme that causes the oxidation of luciferin (an oxidizable
substrate), which is quantifiable since the energy produced
releases a photon of light (bioluminescence).

A method for measuring the concentration of the cyto-
solic free ATP utilizes the microinjection of purified lucif-
erase [118]. However, in this manner, the targeting of the
reporter to the lumen of organelles (or its attachment to
intracellular membranes) is impossible [45]. This problem
was solved through recombinant DNA technology. To mea-
sure the concentration of ATP in the mitochondrial matrix, a
specifically targeted chimera of the ATP-sensitive photo-
protein luciferase was designed: Luciferase cDNA [119]
was delivered to the mitochondrial matrix using the target-
ing sequence of subunit VIII of cytochrome c oxidase,
COX8, [120]; in the absence of this targeting sequence,
luciferase remains in the cytoplasm. Luminescence is de-
pendent on the concentration of luciferin (usually, between
20 and 200 μM is used [47]), and the light emitted is
proportional to the ATP concentration in the sample. The
affinity of luciferase for ATP is in the micromolar range in
vitro but is much lower in vivo [121], and this assay can
detect ATP concentrations ranging from micromolar to pico-
molar levels. Recombinant luciferase has thus been used
repeatedly to study changes in ATP concentration due to
cell stimulation with specific agonists, such as hormones
that move intracellular calcium or changes in fuel supply to
the cell [45, 122, 123].

Considering the difficulty in using recombinant DNAs in
peculiar cell systems, such as myocytes, tracebulae, or even
organs (i.e., whole hearts) that are refractory to transection
or infection, other strategies were developed [124–126]. In
these cases, the NADH/NADPH ratio was used as a valu-
able, indirect indicator of cell energy status. As previously
described, NADH is one of the principal substrates of
OXPHOS and thus of ATP synthesis. On the basis of its
fluorescent properties, NADH levels can be easily moni-
tored with a microscope, a fluorimeter, or a plate reader,
equipped with a filter set for 4′,6-diamidino-2-phenylindole.
In fact, NADH has its maximum absorption peak at 365 nm,
with emission at 450 nm. Unfortunately, this is a very
indirect method of monitoring ATP synthesis and can suffer
from artefacts. Another difficulty is that NADPH, which is
an analogue to NADH for fluorescent properties, is involved
in different intracellular pathways, such as the pentose phos-
phate pathways. Additionally, the respiratory chain is also
driven by FADH2, and it should also be noted that respira-
tory chain activity is not perfectly proportional to ATP
synthesis, especially because of the uncoupling proteins.

The above-mentioned methods are able to provide time-
resolved experiments with high speed (as shown for the

Purinergic Signalling (2012) 8:343–357 353



calcium-stimulated mitochondrial ATP production [47]) but
miss information related to the intracellular localization of
ATP.

This shortcoming was addressed with quinacrine-based
ATP staining. Quinacrine is a fluorescent dye with anti-
malarial properties, derivative of the quinoline–acridine
compounds. It is known to stain ATP when stored in high
concentrations which makes it very useful for the detection
of ATP storage vesicles [127]. It was used to visualize
purine vesicles in several cultured cells like paraneurons
[128], astrocytes [129], pancreatic acini [130], HUVEC
[90], and Jurkat [131], but also in tissues like intestinal
nerves [132], marginal cells of cochlea [133], or chromaffin
cells [134].

Differently from the previous methods, quinacrine does
not allow the measurement of ATP concentration in a wide
dynamic range. It is, however, useful to monitor purine
vesicles using confocal fluorescence microscopy, both in
living or fixed cells, allowing morphological descriptions
and the visualization of live exocytosis.

There is also a sensitive method for ATP detection that is
based on a label-free DNA aptamer as the recognition ele-
ment and ethidium bromide as the signal reporter. Aptamers
are single-stranded DNA, RNA, or even modified nucleic
acid molecules that have the ability to form defined tertiary
structures upon specific target binding [135]. This method
generally requires a fluorophore-labelled DNA aptamer and
a quencher-labelled complementary DNA or a dual-labelled
aptamer beacon with a quencher at one end and a fluoro-
phore at the other end. When ATP is present in solution,
there is a conformational change in the aptamer duplex; an
aptamer/ATP complex is formed, and the number of
duplexes in solution decreases [136].

Recently, a new method with high sensitivity has been
proposed to detect basal levels of extracellular ATP. This
method, based on radio thin-layer chromatography, is able
to detect low amounts of ATP generated to basal levels in
integer lymphocytes. Coupled to confocal microscopy and
quinacrine staining, this new application allows the measure
of micromolar pericellular ATP pools [131].

Definitely, combinations of each of these methods should
be considered when performing experiments related to the
precise measurement of ATP synthesis, consumption, or
storage.
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