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Abstract  
Neuronal disorders are associated with a profound loss of mitochondrial functions caused by 
various stress conditions, such as oxidative and metabolic stress, protein folding or import defects, 
and mitochondrial DNA alteration. Cells engage in different coordinated responses to safeguard 
mitochondrial homeostasis. In this review, we will explore the contribution of mitochondrial stress 
responses that are activated by the organelle to perceive these dangerous conditions, keep them 
under control and rescue the physiological condition of nervous cells. In the sections to come, 
particular attention will be dedicated to analyzing how compensatory mitochondrial hyperfusion, 
mitophagy, mitochondrial unfolding protein response, and apoptosis impact human neuronal 
diseases. Finally, we will discuss the relevance of the new concept: the “mito-inflammation”, a 
mitochondria-mediated inflammatory response that is recently found to cover a relevant role in the 
pathogenesis of diverse inflammatory-related diseases, including neuronal disorders.
Key Words: Alzheimer’s disease; apoptosis; mitochondrial dynamics; mito-inflammation; mitophagy; 
multiple sclerosis; neurodegeneration; Parkinson’s disease; UPRmt

https://doi.org/10.4103/1673-5374.339473

Date of submission: September 8, 2021 

Date of decision: November 17, 2021

Date of acceptance: December 13, 2021 

Date of web publication: April 29, 2022 

Introduction 
Mitochondria are ubiquitous organelles in eukaryotic cells that play a key role 
in many different cellular processes that span from adenosine 5′-triphosphate 
(ATP) synthesis, production of reactive oxygen species (ROS), metabolism 
of amino acids, regulation of cell death and calcium (Ca2+) homeostasis 
(Suomalainen and Battersby, 2018; Danese et al., 2021; Patergnani et al., 
2021a). They consist of an outer mitochondrial membrane (OMM) and an 
inner mitochondrial membrane (IMM) that define an intermembrane space 
and an internal matrix, where the mitochondrial DNA (mtDNA) is located. On 
the IMM are accommodated the proteins involved in the electron transport 
chain and ATP production (Pfanner et al., 2019). Among all mitochondrial 
proteins, 13 of the proteins involved in the oxidative phosphorylation are 
encoded by mtDNA and the remaining ~1200 by the nuclear genome and 
imported, in an unfolded state, into the organelle through the translocons 
of the outer and inner membrane complexes, respectively (Mai et al., 
2017). Given the crucial role of mitochondria in regulating several cellular 
processes, their efficient function is fundamental also in the nervous 
systems. Hence, it is not surprising that the accumulation of mitochondrial 
dysfunctionalities plays a key role in the pathogenesis of different diseases, 
including neuronal disorders (ND) (Han and Xu, 2021). The mitochondrial 
quality control is operated through the coordination of diverse mitochondrial 
stress responses, mechanisms that intervene to ensure cell and mitochondrial 
homeostasis (Patergnani et al., 2020a). In addition, many findings assign 
to mitochondria an alternative role in triggering and sustaining the cellular 
inflammatory response to different stimuli, introducing a new concept: the 
“mito-inflammation”. Despite distinct clinical and pathological hallmarks, the 
mitochondrial stress responses significantly impact the pathogenesis of ND, 
resulting in the “Dr. Jekyll and Mr. Hyde” for these diseases: (1) Compensatory 
mitochondrial hyperfusion: an alteration in mitochondrial dynamics which 
favors the fusion of mitochondria to perform the functional complementation. 
(2) Mitophagy: a selective autophagic response that segregates and 
eliminates dysfunctional mitochondria. (3) Mitochondrial unfolded stress 
response (UPRmt): a mitochondria-nucleus transcriptional program, 
triggered by proteotoxic stress, which promotes mitochondrial proteostasis, 
mitochondrial biogenesis, metabolic adaptations, and ROS detoxification to 
lead survival and mitochondrial network recovery. (4) Mito-inflammation: the 
mitochondria-mediated inflammation, that occurs to preserve cell integrity, 

but when exacerbated, it promotes detrimental effects becoming a cause 
of pathogenesis of several inflammatory-related diseases. (5) Apoptosis: an 
irreversibly cellular response activated by drastic and prolonged stress.

Their activation contributes to limiting the expansion of mitochondrial stress 
providing a protection role (the good represented by Dr. Jekyll); however, 
dysregulation or abnormal activation may exacerbate the mitochondrial stress 
leading to deleterious consequences (the evil represented by Mr. Hyde).

In this review, we describe the diverse mechanisms activated by mitochondrial 
stress and how they are implicated in the development and progression of the 
most common ND, including Parkinson’s disease (PD) and Alzheimer’s disease 
(AD).

Search Strategy and Selection Criteria  
All years were chosen in the search. These searches were performed between 
June and December 2021 by using PubMed database.

Mitochondrial Stress Responses in Neuronal 
Disorders 
The molecular and signaling mechanisms by which mitochondria respond 
to a stress signal begin with basic defense mechanisms (such as the simple 
antioxidant response resulting from excessive ROS production) and end 
with highly connected and tuned processes, which permit to maintain the 
correct functioning of the mitochondrial network and the cell (Table 1). These 
protective mitochondrial responses often hide a dark side; they may turn into 
deleterious responses if their activation is abnormal and persists over time. 
The next sections aim to explore these specialized mechanisms and link their 
contribution to the pathogenesis of different ND.

The Role of Compensatory Mitochondrial 
Dynamic in Neuronal Disorders 
Mitochondria are dynamic interconnected organelles, which constantly 
undergo cycles of fusion and fission that, together with de novo biogenesis 
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and mitophagy, maintain their physiological integrity and control inter-
organellar connections to participate in fundamental cellular processes 
(Marchi et al., 2014). In general, fission is responsible to generate smaller 
mitochondria, ensuring an efficient organization and movement within the cell, 
and permitting to the mitochondrial population to be inherited. Mitochondrial 
fusion consents to the sharing of material between mitochondria to 
guarantee a balanced mitochondrial network at both functional and structural 
levels. Alterations in the mitochondrial re-organization are increasingly 
associated with the development and progression of ND. This section aims to 
describe the machinery involved in mitochondrial dynamics and clarify their 
contribution to ND.

Mitochondrial dynamics
Mitochondria fission and fusion are regulated by a plethora of proteins, the 
majority belonging to the family of dynamin-related GTPases (Zhang et al., 
2019a). The main protein involved in the mitochondrial fission process is 
the cytosolic GTPase dynamin-related protein-1 (DRP-1). DRP-1 is reversibly 
associated with OMM after its recruitment by many adaptors [mitochondrial 
dynamics proteins of 49 and 51 kDa, (MID49 and MID51), mitochondrial 
fission factor, and mitochondrial fission 1] that mediate the binding (Loson et 
al., 2013). Upon cellular stimulation, post-translational modifications occur to 
DRP-1 for its mitochondria recruitment, where it induces scission upon GTP 
hydrolysis by constriction of OMM (Koirala et al., 2013). 

Fusion of mitochondria consists of two steps, where firstly OMM and after 
IMM of two mitochondria that both express mitofusin (MFN) are fused 
(Guillery et al., 2008). The activity and amount of MFN are modulated by 
different post-translational mechanisms, such as de-ubiquitination that 
stabilizes and activates MFN, or phosphorylation events, which trigger MFN 
inhibition and degradation (Chen and Dorn, 2013; Yue et al., 2014; Pyakurel 
et al., 2015). The fusion is also mediated by the 120KDa dynamin-like 
GTPase protein optic atrophy 1 (OPA1) and it is coordinated by the member 
of the mitochondrial solute carrier family SLC25 named SLC25A46 (Cipolat 
et al., 2004; Abrams et al., 2015; Li et al., 2017). In the cells, there are two 
isoforms of OPA1, depending on its alternative splicing and proteolytic 
cleavage occurring in mitochondria: long-OPA1 (L-OPA1) and short-OPA1. 
The balance between them guarantees the physiological mitochondrial 
morphology. Upon apoptotic stimuli, L-OPA1 is converted to the shortest one 
to inhibit mitochondrial fusion (Ishihara et al., 2006). The balancing between 
mitochondrial fusion and fission is fundamental to preserve the overall shape 
of mitochondria. If it lacks, fragmentation of the mitochondrial network may 
occur, thereby facilitating the segregation of dysfunctional mitochondria 
and their consequent elimination by mitophagy or, under abnormal stress 
conditions, it is responsible for cytochrome c (cyt-c) release and apoptosis 
(Oettinghaus et al., 2016). During the apoptotic event, the B-cell lymphoma 
2 (BCL2) Associated X (BAX) and DRP1 translocate to mitochondria where 
cooperate to promote the DRP1-mediated fission and inhibit the MFN2-
mediated fusion, causing mitochondrial fragmentation. Furthermore, BAX 
forms channels on the OMM, favoring mitochondrial permeabilization and 
release of cyt-c. Coincident with BAX activation during apoptosis, the BAX/
BAK-triggering DRP1-sumoylation favors the mitochondrial fragmentation 
stabilizing the association of the fission protein to the mitochondrial 
membrane (Wasiak et al., 2007). In line with this, the expression of a DRP1 
mutant inhibits apoptosis preventing mitochondrial fragmentation (Frank et 
al., 2001). Simultaneously, modest levels of mitochondrial and endoplasmic 
reticulum (ER) stress induce an increase in the fusion process, which 
promotes the formation of long filamentous mitochondria to recover partial 
functional reductions and thus protect the mitochondria from potential 
damages. However, whether the stress persists, this compensatory phenotype 
is lost (Lebeau et al., 2018).  

Currently, the phenomenon of compensatory mitochondrial hyperfusion is 
not totally understood as much evidence matched it either to pathological 
states (Ueda and Ishihara, 2018; Longo et al., 2020) or with protective 
transient mechanisms against aging and neurodegeneration (Mitra et al., 
2009; Tondera et al., 2009; Lebeau et al., 2018). 

Implications of mitochondrial dynamics in neurodegeneration
Overall, mitochondrial fusion is a protective event in neurons, as it allows the 
exchange of a plethora of factors (mtDNA, lipids, proteins, equal distribution 
of metabolites), which would mitigate any damage to the mitochondria, 
maximizing their oxidative capacity and reducing heteroplasmy (Chen et al., 
2007). The physiological balance existing between fusion and fission is deeply 
impaired in ND in favor of a burst of mitochondrial fragmentation, such as 
in PD (Santos et al., 2015), AD (Wang et al., 2009), Huntington (Song et al., 
2011) and Prion disease (Yang et al., 2017). In agreement, the majority of 
mitochondrial fusion proteins are downregulated (Flippo and Strack, 2017). 
However, a transitory mitochondrial response aimed to counteract certain 
types of pathological stressful conditions through the hyperfusion of the 
mitochondrial network exists. Events in which a compensatory hyperfused 
state of the mitochondrial network provides pro-survival effects are firstly 
described in 2009 in cells stressed by a small number (to date) of stressors, 
including ultraviolet light, serum deprivation, and chronic inhibition of protein 
synthesis (Tondera et al., 2009). The form of stress-induced compensatory 
mitochondrial hyperfusion (SIMH) is a transitory state induced by modest 
levels of damage. A mechanism independent from MFN2, which requires 
the expression of L-OPA1 and MFN1, is sustained by the IMM stomatin-like 
protein 2 (Tondera et al., 2009). This allows maintaining an adequate ATP 
production and gain of function in cell resistance to modest stress.

Table 1 ｜ Summary of key components of the pathway regulating the mitochondrial 
stress responses

Pathway Name Function

Mitochondrial 
dynamics

DRP1 Fission

MID49 and MID51 Adaptors of DRP1
MFNs Fusion
OPA1 Fusion
SLC25 Fusion
BAX Mediates the DRP1-mediated fission and 

inhibit the MFN2-mediated fusion
PHB Stabilizes L-OPA1 isoform
OMA1 and YME1L Process the cleavage of OPA1
CL Processes the cleavage of OPA1 and 

regulate OMA1 turnover
GSH Modifies disulphide bonds of MFNs

Mitophagy PTEN-Parkin Positive regulators of mitophagy
TIM23/TOM complex Regulate PINK1 translocation in 

mitochondria
MFN Mitochondrial target of Parkin
LC3, NDP52, optineurin 
TAX1BP1 and p62

Mitophagy receptors

OMA1 Import PINK1 into mitochondria 
independently from TIM23/TOM

FUNDC1, CL, NLRX1 and 
NIX/BNIP3L

Regulate the PINK1-Parkin independent 
mitophagy

AMPK Positive regulator of autophagy and 
mitophagy

Mitochondrial 
unfolded protein 
response (UPRmt)

Ubl-5, dve-1 and atfs-1 Regulate the UPRmt in C. elegans
ATF5, CHOP and ATF4 Main regulators the UPRmt in mammals
eIF2 Regulates the mammalian integrated 

stress response
CLPP, HSP60, and 
YME1L

UPRmt in marker genes

Erα, HTRA2, SIRT3, and 
FOXO

Regulators of CHOP-ATF5 independent 
UPRmt

Mito-inflammation mtDNA, ROS, Ca2+ and 
CL

DAMP released from mitochondria 
during inflammatory conditions that are 
harmful to mitochondria

PRRs Receptors expressed on microglia, 
astrocytes, and macrophages that 
recognize mitochondrial DAMP

MDV Vesicular system for the release of 
mitochondrial DAMP

NLRP3 inflammasome Activated by mitochondrial DAMP
CL Required for NLRP3 docking on 

mitochondria
Apoptosis Cyt-c and Smac/DIABLO IMS-resident pro-apoptotic factors 

released into the cytosol following 
apoptotic stimuli

CAS-9 and APAF Cytosolic interactors of Cyt-c
Ca2+ Positive modulators of apoptosis
MPT Alteration in the permeability of the IMS
BCL2 and BCL-XL Anti-apoptotic factor
BAX Pro-apoptotic factor
CAS-3 Executioner caspase
P38K and tBID BAX activator
CAS-8 Mediates the cleavage of BID in tBID
FAS/FASL Activates CAS-8

AMPK: 5-Adenosine monophosphate-activated protein kinase; APAF: apoptosis protease-
activating factor; atfs-1/ATF: activated transcription factor; BAX: B-cell lymphoma 
2 (BCL2) associated X, apoptosis regulator; BCL2: B-cell lymphoma 2; Bcl-xL: B-cell 
lymphoma-extra large; Ca2+: calcium; CAS: caspase; CHOP: C/EBP homologous protein; 
CL: cardiolipin; CLPP: caseinolytic mitochondrial matrix peptidase proteolytic subunit; 
DAMPs: damage-associated molecular patterns; DRP-1: dynamin-related protein-1; 
eIF2: eukaryotic translation initiation factor 2; FOXO: forkhead box O; FUNDC1: FUN14 
domain-containing protein 1; GSH: glutathione; HSP60: heat shock protein 60; HTRA2: 
htrA serine peptidase 2; IMS: mitochondrial intermembrane space; LC3: microtubule-
associated proteins 1A/1B light chain 3; MDV: mitochondrial-derived vesicles; MFN: 
mitofusin; MID49 and MID51: mitochondrial dynamics proteins of 49 and 51 kDa; MPT: 
mitochondrial permeability transition; NDP52: calcium binding and coiled-coil domain 
2; NIX/BNIP3L: NIP3-like protein X; NLRP: nod-like receptor protein; NLRX1: nod-like 
receptor family member X1; OMA1: metalloendopeptidase; OPA1: optic atrophy 1; 
p38K: p38 kinase; PHB: prohibitins; PRRs: pattern recognition receptors; SIRT3: sirtuins; 
SLC25: members of the mitochondrial carrier family; TAX1BP1: tax1-binding protein 1; 
tBID: truncated BH3-interacting domain death agonist; TIM: translocons of the inner 
membrane; TOM: translocons of the outer membrane; YME1L: ATP-dependent zinc 
metalloprotease. 
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L-OPA1 is currently considered a critical component of the whole protein 
expression pattern in neurodegeneration as it ensures, through different 
molecular pathways, cristae morphology, ATP production, and a correct 
function of electron transport chain during neuronal stress (Quintana-Cabrera 
et al., 2021). To ensure L-OPA1 stability is necessary prohibitin (PHB), which 
acts as a scaffold at the IMM (Kasashima et al., 2008), and a balanced function 
of the peptidases metalloendopeptidase (OMA1) and ATP-dependent zinc 
metalloprotease (YME1L), which process the cleavage of OPA1. Consistent 
with this, following a toxic insult that promotes mitochondrial dysfunction and 
energy depletion, OMA1 and YME1L result degraded, and their proteolytic 
processing to OPA1 is lost, thereby affecting the recovery of mitochondrial 
morphology, which occurs following a stress-induced fragmentation 
(Rainbolt et al., 2016). The absence of PHB at neuronal levels triggers 
neurodegeneration in mice caused by Tau proteins aggregation (Korwitz et 
al., 2016). The consequent stabilization of OPA1 by the loss of OMA1, which 
decreases the adverse processing of the fusion protein, promotes protection 
from neuroinflammation and apoptosis (Korwitz et al., 2016). Interestingly, 
this OPA1 processing mediated by PHB and OMA1 in neurons can be also 
modulated by the mitochondrial phospholipid cardiolipin (CL). Indeed, it has 
been recently demonstrated that CL exists in a molecular complex composed 
of PHB and OMA1, which is fundamental for promoting the OMA1 turnover 
in neurons (Anderson et al., 2020). In confirmation of the critical role of OPA1 
in neurodegeneration, it has been demonstrated that mutations in OPA1 
are the main cause for dominant optic atrophy, an inherited disease that 
affects the optic nerve integrity (Delettre et al., 2000). Syndromic patients 
harboring dominant optic atrophy suffer from a progressive loss of retinal 
ganglion cells accompanied by other symptoms, such as deafness, ataxia, 
and myopathy (Baker et al., 2011). Furthermore, the patients also display 
markers of dysfunctional mitochondria and a compromised mitochondrial 
network, thereby suggesting the importance of the fusion mechanism in a 
neurodegenerative status. Experiments conducted in an OPA1 mouse model 
carrying the recurrent OPA1delTTAG mutation (present in approximately 30% 
of all dominant optic atrophy patients) confirmed this possibility. OPA1delTTAG 
mutation leads to progressive visual failure and loss of locomotor behavior, 
inducing severe mitochondrial dysfunctions (Sarzi et al., 2012). In skeletal 
muscle, the OPA1delTTAG mutation-dependent mitochondrial dysfunction was 
accompanied by an increase in autophagy, mitophagy, and mitochondrial 
proliferation (Sarzi et al., 2012). This excessive mitochondrial turnover 
may alter the ultrastructure of mitochondria and provoke myopathy and 
weakness. Preserving an optimal mitochondrial network is also fundamental 
for cellular metabolism. Profound metabolic signatures have been unveiled 
in mice with OPA1delTTAG mutation since they display alterations in the 
concentrations of phospholipids, amino acids, acylcarnitines, and carnosines 
(Chao de la Barca et al., 2017). In line with this, OPA1delTTAG mutation also 
affects the size of axonal mitochondria, which reflects in a downregulation 
of the (re)myelination status in different central nervous system tracts 
(Ineichen et al., 2021). Interestingly, this effect was also found in mice with 
MFN2R94Q mutation (Ineichen et al., 2021), confirming the relevant role of the 
mitochondrial network for the brain. The neural stem cells activated SIMH to 
counteract the exposure to nicotine, which in turn induced mitochondrial ROS 
production, mtDNA damage, and excessive mitophagy. This study indicated 
that a short-term exposure to nicotine is a stressful condition, sufficient to 
induce mitochondrial dysfunction and alteration in mitochondrial quality 
control, contributing to cellular aging (Zahedi et al., 2019). The SIMH seems to 
have beneficial effects only for short-term adaptions. A chronic induction of 
SIMH led to further stress caused by a static drop of mitochondrial turnover 
in the absence of fragmentation and mitophagy, as reported in apolipoprotein 
E (APOE) expressed astrocytes. Indeed, the severe reduction of MFN1 
ubiquitination concurs in maladaptive phenotypes in AD, where APOE 
constitutes a major risk factor (Schmukler et al., 2020).

The antioxidant activity of glutathione (GSH) is also accompanied by 
compensatory mitochondrial hyperfusion with the concomitant protection 
of cells from death and excessive mitophagy (Shutt et al., 2012). Many 
neurodegenerative disorders are characterized by increased oxidative stress 
which is widely recognized as a key contributor in the progression of the 
disease, such as in AD and PD (Chen et al., 2012). In these contexts, a tight 
feedback loop exists, particularly when a proteostatic stress induces ROS 
production, which in turn exacerbates the proteostatic damage (Angelova 
and Abramov, 2018; Wang et al., 2021). In response to increased oxidative 
stress, neuronal cells use GSH to neutralize ROS during stressful conditions, 
converting its oxidized form glutathione disulfide. The link between 
glutathione disulfide accumulation and mitochondrial remodeling relies 
on the ability of the enzyme to modify several disulphide bonds, especially 
targeting cysteines (Okumura et al., 2011). MFNs reach in these amino acids 
and are the main protein targets to add new disulphide bonds, stabilizing 
them and promoting mitochondrial hyperfusion (Shutt et al., 2012). GSH not 
only protects cells from ROS, but also from other dangerous compounds, 
like the highly electrophilic aldehyde 4-hydroxy-trans 2-nonenal (4-HNE), 
an end-product of lipid peroxidation. In this case, the enzyme glutathione 
S-transferases (GSTs) mediates the conjugation of 4-HNE to GSH as a 
substrate (Alin et al., 1985). It has been demonstrated that 4-HNE represents 
a cause of oxidative stress-induced signaling and toxicity for neurons and 
oligodendrocytes (McCracken et al., 2000). The GST isoform 4α (GSTA4) 
helps to overcome the 4-HNE-mediated toxicity and improve the myelination 
process by reducing the intracellular levels of 4-HNE, increasing the 
mitochondrial functioning in vitro and in vivo in a demyelination/remyelination 
model (Carlstrom et al., 2020). The fact that oxidative stress is fundamental in 
neurological disorders was also confirmed in the experimental autoimmune 

encephalomyelitis (EAE) mouse model (an autoimmune inflammatory 
disorder of primary central nervous system demyelination) (Qi et al., 2006). 
After EAE induction, oxidative damage, impairments in mitochondrial 
functioning, and compromised mitochondrial network are detected in optic 
nerves, retinas, brains, and spinal cords (Qi et al., 2006). Consistent with this, 
mitochondrial dysfunction and increased mitophagy process (which reflect 
the impairment in the mitochondrial network) have been also unveiled in 
organotypic brain slice pre-treated with the demyelinating agent, lysolethicin, 
and in a cuprizone-induced mouse model (often used to investigate the 
demyelination/remyelination events) (Patergnani et al., 2021c). Although 
the best-characterized responses induced by SIMH support improved 
bioenergetics of cells, the importance of this adaptive mechanism also 
involves the activation of antiapoptotic molecular routes that allow beneficial 
effects in neuronal survival. One of these is the activation of the nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB 
is reported to be of primary importance in long-term memory and synaptic 
changes for brain adaptation to new information. Indeed, as reviewed in 
(Kaltschmidt and Kaltschmidt, 2015). NF-κB establishes a gene transcription 
program in favor of neurogenesis, axogenesis, and neuronal transmission 
in adult brains. Thus, NF-κB results are relevant in AD, where the cognitive 
ability and memory are lost (Jha et al., 2019), but also in multiple sclerosis 
(MS) protecting oligodendrocytes against inflammatory insults (Stone et al., 
2017). Although not yet proven in models of neurodegeneration, SIMH is 
reported to be an upstream event in the upregulation of the NF-κB signaling, 
which triggers the activation of mitochondrial E3 ubiquitin (Ub) protein ligase 
1 MUL1, a gene encoding for an E3 Ub transferase located to OMM. The 
intricate cascade of downstream events would involve the formation of a 
multiprotein complex composed of: the ubiquitylated form of tumor necrosis 
factor receptor-associated factor 2, which acts as a bridge between MUL1 
and NF-κB; and by the transforming growth factor-β-activated kinase 1, that 
phosphorylates the NF-κB inhibitors, an inhibitor of nuclear factor kappa B 
(IKKß) and nuclear factor of kappa light polypeptide gene enhancer in B-cells 
inhibitor, alpha (IkBα), respectively (Zemirli et al., 2014).

Overall, the protective role of SIMH as compensatory fusion under stressful 
conditions remains to be fully elucidated. Findings suggest that three are the 
essential components in the evaluation of this mitochondrial stress response 
from which may belong to either beneficial or detrimental features:  what 
proteins take part in which molecular pathway, the type of stress, and the 
time duration. About the first one, it would be useful to investigate post-
translational modifications of fusion proteins that would occur under stress, 
and which are almost unknown. About the other issues, currently, a transient 
event (more difficult to study) would be compensatory and beneficial; a 
chronic mitochondrial hyperfusion would be deleterious also due to persistent 
mitochondrial mislocalization in cells and limited mobility (Girard et al., 2012).

The Role of Mitophagy in Neuronal Disorders 
Autophagy is a cellular catabolic mechanism, in which cytosolic elements and 
damaged organelle are sequestered into vesicles (called autophagosomes) 
and then degraded or recycled through the lysosomes (Klionsky et al., 
2021). Autophagy was discovered during the 1960s (Deter et al., 1967), but 
it was deeply investigated over the past ten years. To date, autophagy is 
recognized as a molecular mechanism that contributes to preserving cellular 
homeostasis, confers resistance to undesirable conditions (such as infection, 
stress, and inflammation), regulates cellular and tissue development, and 
controls cell fate. Autophagy exists in diverse forms that are specialized to 
sequester and degrade specific intracellular material. Proteinphagy identifies 
the involvement of autophagy in the degradation of altered proteins; 
lipophagy points to the sequestration and removal of lipid droplets; as a 
result of bacteria or virus infection, xenophagy is activated. In addition to 
these specialized forms of autophagy, selective forms of autophagy targeting 
portions or entire organelles, such as ER, nucleus, and peroxisomes, also exist. 
Among them, the most studied selective autophagic response is mitophagy, 
a process by which dysfunctional mitochondria are sequestered to be 
eliminated.

Mitophagy
Under severe or prolonged stress conditions mitochondria fusion is inhibited 
and occurring fission, which leads to mitochondrial fragmentation to facilitate 
mitophagy. Mitophagy is a selective cellular mechanism that removes 
damaged or dysfunctional mitochondria, ensuring the mitochondria quality 
control (Tajiri et al., 2016). Firstly observed in reticulocytes, mitophagy 
regulates the cell fate, controlling cellular metabolism and influencing the 
inflammatory response in several pathological conditions (Patergnani et al., 
2021b). The molecular pathway in mitophagy is composed of the axis of the 
phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-induced 
kinase 1 (PINK1) and Parkin (Kitada et al., 1998). Under normal conditions, 
PINK1 is continuously kept at low expression levels, thanks to a high-regulated 
mechanism in which PINK1 is imported into the mitochondria to be degraded. 
In stressed mitochondria, TIM23/TOM complex activity is corrupted and thus 
PINK1 accumulates on the OMM. Following a series of phosphorylations (S402, 
S228, and T257), PINK1 induces Parkin into an active phospho-Ub-dependent 
enzyme, which determines the ubiquitination of several OMM proteins, 
including MFN, representing the signal for the recruitment of a series of Ub-
binding autophagic receptors, such as the autophagic cargo receptor NBR1, 
microtubule-associated proteins 1A/1B light chain 3 (LC3), calcium-binding 
and coiled-coil domain 2 (NDP52), optineurin, tax1-binding protein 1, and 
p62/Sequestome-1 (Geisler et al., 2010; Pickles et al., 2018).
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In these years, mitophagy has acquired more and more value among the 
NDs, with a role characterized by “lights and shadows” (Doxaki and Palikaras, 
2020). Undoubtedly, PD is widely characterized by mutations in the mitophagy 
regulators, Parkin and PINK1 (Figure 1) (Shefa et al., 2019). To date, more 
than a hundred autosomal recessive mutations have been unveiled for the 
Parkin gene, representing the primary cause for the early-onset PD and the 
common cause of autosomal recessive juvenile parkinsonism. About 130 
PINK1 mutations have been characterized and the loss of function mutations 
represents the second most frequent cause of autosomal recessive PD. 
Several studies demonstrated that mutated PINK1 and Parkin are responsible 
to decrease the capacity of the cell to initiate mitophagy (Kitada et al., 1998; 
Valente et al., 2004a, b; Geisler et al., 2010; Morais et al., 2014; Gautier et 
al., 2016; Puschmann et al., 2017). Fibroblasts and neurons obtained from 
patients with PINK1 or Parkin mutations showed impaired recruitment of 
Parkin on the mitochondrial surface or an altered PINK1 activation (Piccoli 
et al., 2008; Seibler et al., 2011). However, it has been suggested that the 
recruitment of Parkin on the mitochondrial surface may occur even in 
presence of PINK1 mutations. Indeed, suppression of the protease OMA1 (that 
can import PINK1 into mitochondria for its degradation independently from 
TIM23/TOM activity and state of mitochondria) restores the mitochondrial 
accumulation of parkin even in presence of PD-Related PINK1 mutations 
(Sekine et al., 2019). It also exists mitophagy molecular mechanisms that are 
PINK1-Parkin independent. Mitophagy may be executed by the OMM protein 
FUN14 domain-containing protein 1 (FUNDC1). In basal conditions, FUNDC1 
is phosphorylated by SRC proto-oncogene, non-receptor tyrosine (SRC) kinase 
(Liu et al., 2012). Under hypoxia, the dephosphorylated form of FUNDC1, due 
to SRC inactivation, may associate with LC3 to prompt the incorporation of 
mitochondria into autophagosomes (Liu et al., 2012). In line with this, NIP3-
like protein X (NIX/BNIP3L) is another OMM-resident protein that mediating 
to specific WXXL-like motif may bind LC3 to sequester mitochondria (Novak et 
al., 2010; Yuan et al., 2017). Recently, it has been demonstrated that also IMM 
and matrix resident proteins can modulate mitophagy. Regarding the IMM 
protein, an example is CL. Upon a mitophagic stimulus, CL moves from the 
IMM to the OMM where acts as a signal for the identification and removal of 
damaged mitochondria, since LC3 protein displays CL-binding sites (Chu et al., 
2013). Meanwhile, the matrix protein nod-like receptor (NLR) family member 
NLRX1 has an LC3-interaction region domain that permits the recruitment of 
LC3 to activate the mitophagy upon infection with the pathogen Listeria (Zhang 
et al., 2019b).

Mitophagy involvement in neurodegeneration
In AD brains, it has been observed that Parkin resulted to be depleted over 
the disease, causing alteration of the normal mitophagic route (Figure 1) (Ye 
et al., 2015). This determines the accumulation of damaged mitochondria, 
increased ROS production, reduced ATP production and it may represent a 
signal for apoptosis and neuronal cell death. The contribution of mitophagy 
to the PD pathogenesis has been also confirmed in Drosophila, where PINK1-
Parkin mutant flies showed mitochondrial alterations, locomotive deficiencies, 
and defects in neuron development (Julienne et al., 2017). Surprisingly, 
mice with PINK1 and Parkin deletion did not have evident PD-phenotypes. 
Indeed, Parkin-deficient mice did not exhibit profound deficits in neurological 
function, learning, memory and the substantia nigra pars compacta 
dopamine neurons were unharmed (Perez and Palmiter, 2005). A similar 
observation was achieved in PINK1 knock-out (KO) mice, where the number 
and the morphology of dopaminergic neurons in the substantia nigra were 
comparable with the wild-type mice (Kitada et al., 2007). PINK1 KO mice only 
exhibited a modest deficit in locomotor activity and increased inflammation 
following exhaustive exercise, which severely stressed mitochondria (Kelm-
Nelson et al., 2018; Sliter et al., 2018). Despite this, the levels of pro-
inflammatory cytokines in the serum of PINK1 KO mice, in resting conditions 
were comparable to those in wild-type mice (Sliter et al., 2018). Overall, these 
data suggest that compensatory mechanisms are activated to preserve the 
neuronal homeostasis, and the fact that PINK1 and Parkin did not induce 
robust PD-phenotype, indicates that PINK1-Parkin mitophagic pathway under 
physiological circumstances may be dispensable. Opposite, the PINK1-Parkin 
axis became essential in response to pathological stimuli or stress conditions. 
In confirmation of this, by crossing Parkin KO mice with a mouse model 
that accumulates altered mitochondria (Mutator mice), the mitochondrial 
dysfunctions exacerbated and lead to dopaminergic neuronal cell death, 
phenotypes not observed in the parental Mutator or Parkin-KO (Pickrell et al., 
2015). 

In AD, the neuronal loss is due to uncontrolled protein accumulation of 
amyloid-β (Aβ), alpha-synuclein (α-syn), Ub, and APOE, which form aggregates 
of extracellular (amyloid) plaques; and of APOE and hyperphosphorylated 
tau, responsible for intracellular and extracellular neurofibrillary tangles, 
respectively. In the last years, several reports suggest that mitophagy 
represents the main process for AD progression. Aβ, amyloid precursor 
protein, and its processing enzymes were found to provoke alterations in 
mitochondrial morphology and function, with failing in mitophagy activation. 
Notably, this effect was unveiled in vitro as well as in the AD mouse model 
and also in the human post-mortem brain, where the accumulation of altered 
mitochondria was associated with mitophagy failure (Vaillant-Beuchot et al., 
2021). Furthermore, in AD brains, it was also observed that Parkin resulted 
to be depleted over the disease, causing alteration of the normal mitophagic 
route with consequent loss of mitochondrial functions (Ye et al., 2015). 
Defects in mitophagic activity were also reported in the recent work of Fang 
et al. that unveiled evidence of mitophagy impairment in the hippocampus 
of AD patients, in neurons derived from induced pluripotent stem cells, 

Figure 1 ｜ Selective mitochondrial autophagic response in neuronal disorders. 
(A) When mitochondria suffer an important damage, PINK1 accumulates to the 
mitochondria and recruits Parkin to the OMM. Here, Parkin determines the ubiquitination 
of mitochondrial resident proteins. This represents a signal for the recruitment of a 
series of ubiquitin-binding autophagic receptors that promote degradation of the non-
functional organelle by mitophagy. Among the diverse neurological disorders, PD is 
characterized by PINK1-Parkin loss and mutations. These conditions alter the normal 
PINK1 functioning, thus causing failure in Parkin recruitment on the mitochondrial 
surface. As a result, the mitochondrial autophagy is impaired and results not efficient 
to remove damaged mitochondria. (B) Mitophagy is also a key process during AD 
pathogenesis. Indeed, aberrant production and accumulation of Aβ and tau tangles 
cause loss of mitochondrial functioning and failure of mitophagy execution. When these 
conditions persist, neuronal cell death is induced. (C, D) Recent works demonstrate 
that the circulating markers of mitophagy and mitochondrial dysfunctions are highly 
expressed in circulating body fluid of MS-affected patients. Interestingly, they correlate to 
an active phase of the disease. Consistently, the sustained inflammatory condition that 
characterized MS causes oligodendrocyte damage and loss of mitochondrial functioning, 
and energetic imbalance. Furthermore, this condition activates the AMPK-dependent 
autophagy and diverse cellular forms of selective autophagy, such as mitochondrial 
autophagy and nuclear receptor coactivator 4-ferritinophagy. All these conditions are 
sufficient to provoke demyelination as well as loss of the re-myelination process. AD: 
Alzheimer’s disease; AMPK: 5-adenosine monophosphate-activated protein kinase; ANT: 
adenine nucleotide translocator; ATG: autophagy gene; Aβ: amyloid-beta; MS: multiple 
sclerosis; Mt: mitochondria; NCOA4: nuclear receptor coactivator 4; NFL: neurofilament; 
OMM: outer mitochondrial membrane; PD: Parkinson’s disease; PINK1: PTEN-induced 
kinase 1; WT: wild-type. 

in diverse AD animal models, and Aβ Caenorhabditis elegans (C. elegans) 
models (Fang et al., 2019). However, using the NAD+ precursor, nicotinamide 
mononucleotide, as mitophagic inducer, the cognitive impairments were 
ameliorated (Fang et al., 2019). Indeed, the overexpression of PINK1 reduced 
Aβ accumulation and counteracted the cognitive impairments, improving 
synaptic function and learning memory in AD animal models, through the 
NDP52- and optineurin-dependent mitophagy (Du et al., 2017). Altered 
expression of autophagic and mitophagy markers has been observed in 
biofluids obtained from AD patients, changes that could be used as possible 
biomarkers for an early detection or monitoring of progression disease 
(Castellazzi et al., 2019b). 

N-terminal truncation of tau protein represents another hallmark of AD and 
occurs as an early event in the disease (Garcia-Sierra et al., 2008). It has 
been demonstrated a stable association between an N-terminal fragment of 
tau with Parkin, correlated to cognitive impairments in AD animal models as 
well as in the human AD brain (Corsetti et al., 2015). This protein interaction 
blocked the recruitment of Parkin on the mitochondrial membrane, 
determining impairments in mitophagy (Cummins et al., 2019).

Disarrangements in mitochondria quality control have been observed also 
in MS. 5-adenosine monophosphate-activated protein kinase (AMPK) is 
the primary activator of diverse selective autophagy responses, including 
mitophagy. It has been demonstrated that MS-like conditions determined 
myelin loss with a concomitant change in the energetic status of 
oligodendrocyte and loss of several mitochondrial functions, which provoked 
ROS production and triggered autophagy by AMPK activation (Bonora et 
al., 2014b). The fact that a deregulated mitochondrial status is determinant 
to trigger autophagy in MS was also demonstrated in vivo in various MS 
animal models (Alirezaei et al., 2009; Joubert et al., 2009; Akatsuka et al., 
2017; Becher et al., 2018; Paunovic et al., 2018). However, these studies 
lack to demonstrate that the mitophagy process is directly involved in MS 
pathogenesis. First evidence was achieved when circulating markers of 
mitophagy were found in both sera and cerebrospinal fluid (CSF) of MS 
patients (Figure 1) (Patergnani et al., 2018). Interestingly, they correlated 
with the active phase of the disease and with the release of pro-inflammatory 
cytokines (Castellazzi et al., 2019a). Other clinical studies confirm this first 
study, elevated circulating levels of Parkin, ATG5, neurofilament light chain (an 
adverting biomarker of axonal damage) and reduced levels of mitochondrial 
adenine nucleotide translocase 1 were detected in biofluids of MS patients 
(Hassanpour et al., 2020; Joodi Khanghah et al., 2020). All these findings, 
not only suggest a sustained activation of the mitochondrial quality control 
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program aimed to remove the altered mitochondria during MS, but also 
propose circulating mitophagic proteins as potential predictive biomarkers. 
However, before this, it is necessary to validate these observations in greater 
patient cohorts and monitor the expression of autophagy and mitophagy 
markers during the active treatments used against MS. In addition, it is of 
fundamental importance to understand the origin of these markers and verify 
whether they may be only the result of cell death events that occur in MS. In 
these studies, the authors lack to investigate these critical points and translate 
their findings into other experimental models. A deeper investigation of 
the role of mitophagy in MS comes from our recent study (Patergnani et 
al., 2021c). Here, we confirm the excessive presence of mitophagy markers 
in both CSF and sera of MS patients. Indeed, we demonstrated the direct 
activation of mitophagic machinery in an in vivo demyelinating mouse model. 
Our results have also translational potential since we show that blocking the 
abnormal mitophagy with anti-psychotic compounds (identified as potential 
inhibitors of autophagy) permitted the reactivation of myelination in vivo. 
Finally, we uncovered that apart from mitophagy, also the selective ferritin-
autophagy, mediated by the nuclear receptor coactivator 4, was responsible 
to prompt the inflammatory response in all MS models analyzed (Figure 
1) (Patergnani et al., 2021c). These findings show that mitophagy acts as 
a secondary mechanism that exacerbates the progression of pathology, 
becoming a novel potential therapeutic target against MS.

Similar considerations should be done also for epilepsy, where several studies 
have demonstrated that impairment in mitochondrial functions is critical for 
the development and progression of the disease, and these mitochondrial 
dysfunctions are accompanied by persistent mitophagy (Rahman, 2015). 
Mediating TEM analysis, it has been observed the accumulation of 
autophagosomes and damaged mitochondria in tissue samples from 
hippocampi and temporal lobe cortexes of refractory temporal lobe epilepsy 
patients (Wu et al., 2018). To date, it has been demonstrated that glutamate-
induced excitotoxicity caused neuronal death in epilepsy (Ambrogini et al., 
2019), influencing also the mitophagy functioning (Jin et al., 2018; Wang et 
al., 2019a). It was observed that glutamate-induced excitotoxicity activated 
mitophagy in mouse hippocampal neurons. The maintenance of an adequate 
level of mitochondria was performed by administration of melatonin and 
leptin, which reduced mitophagy and neuronal cell death. Similarly, persistent 
mitophagy and neuronal degeneration were observed in different status of 
epileptic rat models (Zhang et al., 2020b). 

Protective or detrimental? The role of mitophagy in neuronal disease is 
controversial; its cytoprotective effect is questioned by the persistence 
activation of the process that exacerbates its action contributing to neuronal 
vulnerability. 

The Role of Mitochondrial Unfolded Protein 
Response (UPRmt) in Neuronal Disorders 
UPRmt was originally identified in mammals but it is thanks to studies 
in C. elegans that the genes involved in sensing and responding to this 
mitochondrial stress response have been identified (Martinus et al., 1996). 
Oxidative phosphorylation dysfunction, proteostatic stress, ATP depletion, 
dissipation of mitochondrial membrane potential, and pathogen infections 
play a key role in the UPRmt activation (Yoneda et al., 2004; Haynes and Ron, 
2010). Findings permitted to identify in the proteins ubiquitin-like 5, Homobox 
protein dve-1, and stress-activated transcription factor (ATFS-1) the essential 
members of UPRmt in C. elegans. In mammals is activating transcription factor 
5 (ATF5), the homologous to ATFS-1, the principal actor of UPRmt, where 
its expression is influenced by the transcription factors C/EBP homologous 
protein (CHOP) and ATF4, respectively (Quiros et al., 2017). Differences among 
C. elegans and mammals are not only restricted to this, indeed in mammals, 
but UPRmt is also part of a broader stress response program called the 
integrated stress response. During this adaptive translational program, stress 
stimuli activate four kinases, which activities converge on phosphorylation of 
the eukaryotic initiation factor 2. It has been demonstrated that integrated 
stress response responds to the mitochondrial dysfunction and participates 
with UPRmt to the recovery of mitochondrial homeostasis (Fessler et al., 2020; 
Guo et al., 2020). Furthermore, eukaryotic initiation factor 2 phosphorylation 
increases translation of ATF4 (Guo et al., 2020), indicating integrated 
stress response as an essential mechanism to sustain the UPRmt activation, 
mediating ATF5. In the next section, we describe the molecular mechanisms 
of UPRmt and report how these are involved in NDs.

Mechanisms and function of UPRmt

UPRmt is a protective mitochondrial to the nuclear signal response that 
involves a set of transcription factors, which up-regulate nuclear gene 
expression to induce mitochondrial chaperones, proteases, and antioxidant 
enzymes to reduce the protein-folding burden of the organelle or remove 
toxic proteins. Array analysis revealed that UPRmt also induces the 
transcription of mitochondrial fission, metabolic, biogenesis, inflammatory, 
and mitokine genes (Aldridge et al., 2007; Nargund et al., 2012; Tian et al., 
2016; Yi et al., 2018). It is activated in response to alterations of mitochondrial 
proteostasis, variations of membrane potential caused by various stress 
conditions, such as oxidative, metabolic stress, protein folding or import 
defects, and mtDNA alteration (Houtkooper et al., 2013; Moehle et al., 2019). 

To date, independent and parallel pathways are linked to UPRmt. The first one 
involves the transcription factor CHOP, which promotes the transcription of 
mitochondrial proteases and chaperons, such as ATP-dependent Clp protease 

proteolytic subunit (CLPP) and the heat shock protein 60 (HSP60), in response 
to proteotoxic stress through the transcriptional regulator ATF5 (Zhao et al., 
2002; Fiorese et al., 2016). ATF5 has a mitochondrial localization and nuclear 
targeting sequence, which under physiological conditions it is constitutively 
imported and degraded into mitochondria (Teske et al., 2013; Harbauer et al., 
2014; Fiorese et al., 2016). When a mitochondrial stress condition occurs, the 
mitochondrial translocation of ATF5 is blocked, resulting in its relocalization 
to the nucleus, where activates the transcription of UPRmt marker genes, like 
HSP60 and CLPP (Haynes and Ron, 2010; Nargund et al., 2012; Rolland et al., 
2019). 

The other two UPRmt activating ways are CHOP-ATF5 independent. In the 
estrogen receptor alpha (ERα) pathway, ROS production induces the AKT 
phosphorylation and the subsequent ER-α activation with the induction of the 
intra-mitochondrial-space protease htrA serine peptidase 2, the mitochondrial 
biogenesis regulator NFR1 and the increase in proteasome activity (Papa and 
Germain, 2011). In the Sirtuin 3-axis, forkhead box O activation induces the 
expression of the antioxidant superoxide dismutase (SOD)-1, -2, and catalase 
genes as well as mitochondrial biogenesis and mitophagy genes (Papa and 
Germain, 2014; Kenny and Germain, 2017).

The emerging role of UPRmt in neurodegeneration
Differently from other mitochondrial stress responses, the role of UPRmt in 
neuronal diseases is emerging, where ATF5 (in mammalian) or ATFS-1 (in 
C. elegans) pathways seem to have significant implications. Regarding PD, 
analysis of the postmortem brain revealed enhanced levels of UPRmt activation 
markers, such as HSP60 (Pimenta de Castro et al., 2012). Parkinsonian 
toxins used in PD models, including inhibitors of mitochondrial complex I 
and enhancers of ROS production, are considered potent UPRmt inducers 
(de Castro et al., 2011). Consistent with this, the proteostatic stress induced 
by the aggregation in the mitochondrial compartment of the highly soluble 
unfolded protein α-syn, which accumulates in Lewy bodies and Lewy neurites 
in PD and other synucleinopathies, represents a critical step in the recruitment 
of UPRmt (Franco-Iborra et al., 2018). Accumulation of α-syn in mitochondria, 
imported by specific interaction with TOM20, has been reported in substantia 
nigra pars compacta of PD patients (Devi et al., 2008; Di Maio et al., 2016). It 
has been demonstrated that the α-syn PD-related variant A53T, accumulating 
into the mitochondria, inhibits the UPRmt peptidase marker, CLPP, which 
sustained the UPRmt activation over time with detrimental effects in 
dopaminergic neurons (Hu et al., 2019). Abnormal UPRmt activation has been 
also obtained in the C. elegans model of PD overexpressing the α-syn PD-
related variants, A53T and A30P, conditions in which the beneficial effects of 
UPRmt are lost when persisting the UPRmt-overactivation inducing neurotoxic 
consequences (Martinez et al., 2017). The overexpression and overactivation 
of ATFS-1 potentiate the proteotoxicity of α-syn in dopaminergic neurons, 
demonstrating that UPRmt overactivation contributes to exacerbating 
the pathogenesis in PD (Martinez et al., 2017). However, the survival of 
dopaminergic neurons is initially subjected to ATFS-1 and UPRmt activation, 
as shown in C. elegans mutants for mitochondria-related genes implicated 
in monogenic PD (Cooper et al., 2017). The accumulation of dysfunctional 
mitochondria in pdr-1 and pink-1 mutants led to the activation of UPRmt. In 
this case, ATFS-1 was required for the longevity of PD mutants and mitigated 
the detrimental effects of mutants on the dopamine neurons (Cooper et al., 
2017). These two facets of the same pathway suggest that ATFS-1-dependent 
UPRmt activation is potentially a hermetic process: beneficial during transient 
activation, but detrimental during chronic activation.

Aβ deposits in the brain are also present in mitochondria of AD mice and 
patients (Caspersen et al., 2005). Aβ precursor is cleaved by the mitochondrial 
HtrA2 protease, which controls the Aβ oligomerization delaying its proteotoxic 
effect (Park et al., 2006; Kooistra et al., 2009). Like in PD, the proteotoxic 
effect of mitochondrial Aβ activated UPRmt in human cells and mice (Shen 
et al., 2019). However, the Aβ-induced proteinopathy was exacerbated by 
pharmacological inhibition of UPRmt, indicating that also in AD the UPRmt has 
initially a protective role (Perez et al., 2020). Prefrontal cortex derived from 
AD patients presented high expression levels of UPRmt-induced genes, such 
as mitochondrial chaperone HSP60 and ATP-dependent zinc metalloprotease 
YME1L, which correlated with an increase in severity of disease (Beck et al., 
2016; Sorrentino et al., 2017).       

Oxidative and proteostatic stresses play a key role in the activation of UPRmt 
also in amyotrophic lateral sclerosis (ALS) and a spectrum of TDP-43-related 
proteinopathies, such as frontotemporal lobar degeneration (Gomez and 
Germain, 2019; Wang et al., 2019c). Mutations in mitochondrial SOD1 are one 
of the principal causes of ALS, where the paralysis due by damages of motor 
neurons and the spinal cord is a consequence of increased production of ROS 
(Beckman et al., 2001) and abnormalities in multiple organelles in neurons, 
including mitochondria (Magrane et al., 2014). In particular, the mutant 
SOD1G93A accumulates in mitochondria in vivo, on the OMM, where interacts 
with apoptotic-regulating proteins and/or Ca2+-effector proteins, such as 
B-Cell Lymphoma 2 (BCL2) and voltage-dependent anion-selective channel, 
respectively (Israelson et al., 2010; Pedrini et al., 2010). Furthermore, SOD1G93A 
may also accumulate in the IMS, where alter the import and maturation of 
mitochondrial proteins, thus promoting mitochondrial fragmentation and 
alterations in mitochondrial dynamics in motor neurons (Kawamata and 
Manfredi, 2010; Igoudjil et al., 2011). The oxidative and proteostatic stress, 
activating UPRmt in ALS, is also sustained by mutated TDP-43 and CHCHD10 
(coiled-coil-helix-coiled-coil-helix domain containing 10), which accumulate 
into mitochondria, induce ROS production, mitochondrial dysfunction, and 
the up-regulation of UPRmt-related transcription factors CHOP and ATF5 in 
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vivo (Anderson et al., 2019; Wang et al., 2019c; Straub et al., 2021). The 
activation of UPRmt has a protective role in the onset of ALS, but its function 
may exacerbate the disease progression causing neurodegeneration, as 
demonstrated by the abnormal accumulation of mitochondrial TDP-43 due 
to the downregulation of mitochondrial LONP1 protease. In addition, UPRmt 
activation may be conditioned by sex difference, as emerged in SOD1G93A 
mutant mice (Riar et al., 2017; Pharaoh et al., 2019; Wang et al., 2019c).

Proteostatic effects have been also associated with mutant huntingtin 
although to date it is not reported a direct involvement in active UPRmt. 
Huntingtin impairs the mitochondrial protein import, localizing to 
mitochondria in vitro and in vivo in HD models and the caudate nucleus of 
HD patients (Orr et al., 2008; Yano et al., 2014). ATF5 accumulation has been 
reported within the characteristic polyglutamine-containing neuronal nuclear 
inclusions in the brains of HD patients and mice (Hernandez et al., 2017). 
In the HD model, the overexpression of ATF5 mitigated the neurotoxicity 
induced by self-aggregating poly-glutamine, suggesting that UPRmt and ATF5 
have a protective role in HD. On the contrary, the sequestration of ATF5 into 
polyglutamine-containing neuronal nuclear inclusions seems to abolish its 
neuroprotective activity, rendering the neurons more susceptible to mutant 
huntingtin-triggered death. High levels of ATF5 have been also found in adult 
neurons of epilepticus mice and were  correlated as a pro-survival mechanism 
(Torres-Peraza et al., 2013).

In these years, the relationship between UPRmt and neuronal diseases is 
growing, generally considered as beneficial for cellular homeostasis; however, 
evidence has started to reconsider this mitochondrial response, showing that 
the abnormal UPRmt activation may be detrimental to the cell under some 
pathological conditions.

The Role of “Mito-inflammation” in Neuronal 
Disorders 
Relationship between inflammation and mitochondria: 
the mito-inflammation concept
Chronic neuroinflammation is a common implication of NDs, characterized by 
microglia and/or astrocytes activation, which provoke an increased release 
of cytokines or chemokines and in some cases disruption of the blood-
brain barrier with infiltration of immune cells. A process may be induced by 
mitochondrial dysfunction that, in turn, may promote and exacerbate the 
mitochondrial damage (Lin and Beal, 2006; Bader and Winklhofer, 2020). 
This vicious cycle leads to the release of mitochondrial damage-associated 
molecular patterns (mtDAMPs), such as mtDNA, ROS, Ca2+, CL, and other 
mitochondrial-derived molecules, in part following a vesicle pathway, which 
activates specific inflammatory cascades. mtDAMPs, in turn, play a key role in 
several inflammatory-related pathological conditions, including the NDs (Lezi 
and Swerdlow, 2012; Swerdlow, 2012; Patergnani et al., 2021a) (Figure 2).

Figure 2 ｜ Contribution of mito-inflammation in neuronal disorders. 
Dysfunctional mitochondrial in neuronal and in infiltrated cells through the blood-brain 
barrier release mitochondrial damage-associated molecular patterns (mtDAMPs), such 
as mitochondrial DNA (mtDNA), mitochondrial reactive oxygen species (ROS), ion calcium 
(Ca2+), and cardiolipin (CL) to sustain the neuroinflammation in neuronal disorders. The 
mito-inflammation is the contribution of the organelle to inflammatory response, when 
mitochondrial constituents and products are released to induce the up-regulation, 
activation, and release of inflammasomes and pro-inflammatory mediators, respectively. 
Created with BioRender.com.  

Involvement of mito-inflammation in neurodegenerative diseases
The high susceptibility to mitochondrial alterations observed in NDs render 
the cells of the system nervous more prone to detrimental effects of mito-
inflammation. Mito-inflammation is the mitochondrial compartmentalization 
response of inflammation, mediated by recognition of mtDAMPs from pattern 
recognition receptors that may be expressed by microglia, astrocytes, and 
macrophages (Lampron et al., 2013; Walsh et al., 2014; Freeman et al., 2017), 
but also by oligodendrocytes (McKenzie et al., 2018), neurons (Kaushal et al., 
2015) and endothelial cells (Gong et al., 2018). mtDAMPs may be released 
outside the cell following a specific vesicle pathway, where mitochondrial-
derived vesicles are generated through the selective incorporation of 
protein cargoes, which may include outer, inner membrane, and matrix 
content (Neuspiel et al., 2008; Soubannier et al., 2012). Findings indicate 
that mitochondrial-derived vesicles-mediated transfer of mitochondrial 
content, such as oxidized mtDNA or mitochondrial proteins, influences the 
inflammatory responses of recipient cells, although the effect can be either 
anti- or pro-inflammatory, depending on the context (Todkar et al., 2021). 
Encapsulated mitochondria-derived constituents released from microglia, in 
the genetic mouse model of ND, contribute to disease propagation by acting 
as effectors of the innate immune response, targeting adjacent astrocytes 
and neurons (Joshi et al., 2019). The immune stimulation by mitochondrial-
derived vesicles can also occur in absence of inflammation, as in the case 
of the priming of dendritic cells mediated by antigen-driven activated T 
lymphocytes through the transferring of mtDNA to induce protection of 
dendritic cells against pathogen infection (Torralba et al., 2018).

In the post-mortem brain of PD patients, the deficit of complex I observed 
in platelets and fibroblasts represent the principal cause of mitochondrial 
ROS production, responsible for oxidative damages, even at the mtDNA 
level (Yoshino et al., 1992; Haas et al., 1995; Keeney et al., 2006; Villace 
et al., 2017). Oxidized and degraded mtDNA was found in human CSF 
plasma and mouse primary astrocytes associated with inflammatory 
and neurodegeneration states (Mathew et al., 2012). Circulating mtDNA 
was found increased also in CSF subjects with traumatic brain injury and 
correlated with unfavorable neurological outcomes (Walko et al., 2014). The 
level of circulating mtDNA is thus a potential biomarker for early-stage of PD 
and AD disease (Podlesniy et al., 2013; Pyle et al., 2015). Evidence of oxidative 
mtDNA modifications is present also in AD patients (Mecocci et al., 1994; 
Lovell and Markesbery, 2007). Consistent with this, external mtDNA injection 
into rodent hippocampi induced pro-inflammatory changes, increasing the 
levels of phosphorylation of pro-inflammatory transcription factors in the 
cortex (Wilkins et al., 2016). In particular, the authors observed an increased 
expression of the cell surface colony-stimulating factor 1 receptor, which 
promoted AKT phosphorylation that, in turn, activated NF-κB signaling 
(Wilkins et al., 2016). Interestingly, the authors also validated their findings 
in an AD mouse model, thereby demonstrating how mitochondria and/or 
mitochondrial fragments may contribute to neuroinflammation.

Mitochondrial-derived ROS, primarily produced from complex I and III 
due to accumulation of unfolded proteins, excessive Ca2+ or oxidative 
phosphorylation impairment, activate the NF-κB pathways, first signal 
(priming) of inflammasome activation. This results in the transcriptional 
upregulation of inflammasome members and cytokines, such as NLR family 
pyrin domain containing 3 (NLRP3) and interleukin 1β (IL-1β) (Figure 2) 
(Rubartelli, 2014; Chen et al., 2015; Rimessi et al., 2016; Patergnani et al., 
2021a). Perturbations in mitochondrial Ca2+ signaling contribute to boosting 
the production of mitochondrial ROS with important repercussions on the 
inflammatory status (Figure 2) (Rimessi et al., 2015). This may happen directly, 
by stimulating mitochondrial ROS-generating enzymes, such as α-ketoglutarate 
and glycerol 3-phosphate dehydrogenase (Murphy, 2009; Gorlach et al., 
2015), or indirectly, mediating the Ca2+-dependent activation of nitric oxide 
synthase, which blocks the mitochondrial complex IV via nitric oxide and 
through the Ca2+-dependent mitochondrial membrane depolarization via 
reverse electron transport (Biasutto et al., 2016).

The mitochondrial ROS is also involved in NLRP3 inflammasome activation 
in SOD1G93A mutant mice-derived microglia, where the protein aggregates 
have an essential role to induce mitochondrial dysfunction in ALS (Deora et 
al., 2020). NLRP3 is an emerging pattern recognition receptor, a key player 
in neuroinflammation, activated by mitochondrial ROS, mtDNA, cardiolipin, 
and Ca2+ in a two-step process (Figure 2). It accumulates to mitochondria 
where oligomerizes with apoptosis-associated speck-like protein containing a 
CARD (ACS) and pro-caspase (CAS)-1 to promote the release of IL-1β and IL-
18 (Rimessi et al., 2015; Zhong et al., 2018). Mitochondrial cardiolipin that is 
regulated by the transcriptional activity of ATFS-1 (Shpilka et al., 2021) is also 
required for NLRP3 inflammasome activation (Figure 2). Indeed, exposure 
to the antibiotic linezolid provoked mitochondrial dysfunction and activated 
NLRP3. Interestingly, inflammasome activation and mitochondrial damage 
were abolished when the mitochondrial compartment was stabilized with the 
inhibitor of mitochondrial membrane permeability transition cyclosporine-A, 
thereby suggesting a close relationship between inflammasome recruitment 
and mitochondria activities. This was confirmed since the authors not only 
demonstrated that NLRP3 can bind CL, but they also provided evidence 
that CL is required for NLRP3 activation and its docking to mitochondria 
(Iyer et al., 2013). CL is downregulated in PD and AD brain, it is frequently 
found peroxided by the increased oxidative stress that characterizes 
these pathologies, influencing its regulatory activity on the mitochondrial 
respiration complex (Ruggiero et al., 1992; Chicco and Sparagna, 2007; Tyurin 
et al., 2008; Monteiro-Cardoso et al., 2015). In particular in PD pathogenesis, 
CL interacts with α-syn within the mitochondrial membranes of PD brains, 
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and this protein interaction interferes with the ability of cardiolipin to regulate 
the electron transport chain, exacerbating the progression of PD through the 
production of mitochondrial ROS (Shen et al., 2014; Ghio et al., 2016).    

NLRP3 activation has been implicated in the progression of several neuronal 
disorders. Genetic polymorphisms of NLRP3 and high levels of systemic and 
localized NLRP3 inflammasome expression, such as in mesencephalic neurons, 
are associated with the progression of the disease and motor severity (von 
Herrmann et al., 2018; Fan et al., 2020). The recruitment of inflammasome 
was also confirmed by high levels of IL-1β and CAS-1 measured in serum and 
striata of PD patients, respectively (Mogi et al., 1994; Zhou et al., 2016).

α-Syn may active the NLRP3 inflammasome in human monocytes and 
stabilized microglial cells, while the failure in NLRP3 activation in primary 
microglial cells remains controversial (Gustin et al., 2015; Gustot et al., 
2015; Zhou et al., 2016). The inflammasome activation in primary microglia 
is instead mediated by mitochondrial dysfunction and by the neurotoxin, 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which via mitochondrial ROS 
led to NLRP3 assembly to induce dopaminergic neurodegeneration (Sarkar 
et al., 2017; Lee et al., 2019). A contribution to neurodegeneration is also 
promoted by the negative regulation of autophagy-mediated by NLRP3 
inflammasome activation in microglia. Autophagy fails to clear protein 
aggregates and damaged organelles conditioning the immune responses and 
neuroinflammation, as reported in prion diseases. Here, it was demonstrated 
that the neurotoxic prion peptide PrP106-126 activates NLRP3 in a murine 
microglial cell line, which in turn, promoted CAS-1-induced TIR-domain-
containing adapter-inducing interferon-β cleavage. In this state, TIR-domain-
containing adaptor-inducing interferon-β fails to activate autophagy (Lai et 
al., 2018). In line with this finding, the exacerbation of NLRP3 inflammasome 
activation has been reported in Parkin and PINK1 KO mice- and patients-
derived microglia, where the abnormal NLRP3 signaling was also associated 
with downregulation of the negative regulator of NF-κB, A20 protein (Mouton-
Liger et al., 2018). Indeed, the administration in PD-induced rat models of 
CAS-1 inhibitor, Ac-YVAD-CMK, or the Cyclosporine A derivate, NIM811, 
improved the number of dopaminergic neurons reducing the activation of 
NLRP3 inflammasome (Mao et al., 2017; Zhang et al., 2020a).

The deposition of misfolded Aβ is the pivotal cause of NLRP3 inflammasome 
activation in microglia in AD pathology. Aβ may bind ASC, released from 
inflammasome activation, exacerbating the formation of Aβ oligomers 
(Holbrook et al., 2021). Also, tau protein oligomers contribute to NLRP3 
inflammasome in human microglial cells (Panda et al., 2021). Microglia with 
elevated expression of IL-1β have been detected surrounding Aβ plaques 
in AD patients (Simard et al., 2006). Besides microglia also peripheral blood 
mononuclear cells isolated from AD patients presented higher expression 
levels of NLRP3 inflammasome members, such as NLRP3, ASC, CAS-1, and 
the cytokines IL-1β and IL-18, indicating that also the peripheral NLRP3-signal 
is increased in AD (Saresella et al., 2016). Similar findings were observed in 
both peripheral blood mononuclear cells and CSF of MS patients, in which 
high levels of IL-1β and IL-18 have been reported, indicating a sustained 
NLRP3-activating signal (Inoue and Shinohara, 2013). The expression of gain-
of-function variants of NLRP3 (Q705K) and IL-1β (-511C>T) correlated with 
severity and progression of MS, indicating that a sustained activation of the 
inflammasome is associated with a bad prognosis of MS (Soares et al., 2019). 
Indeed, CAS-1 and ASC have been suggested as biomarkers for MS onset, since 
elevated expression of CAS-1 has been found at demyelinating lesions levels 
(Keane et al., 2018; Voet et al., 2018). However, the cognitive impairments 
and the neuropathology ameliorated when inflammasome was inhibited, as 
demonstrated by administration of MCC950 or by CAS-1 inhibitor, VX-765, 
that improved the cognitive function and neuroinflammation in AD mouse 
models, limiting the deposition of Aβ plaques and favoring their clearance 
(Dempsey et al., 2017; Flores et al., 2018). The pharmacological inhibition of 
NLRP3 has shown good results also in EAE and stroke mice models. Indeed, by 
suppressing the inflammasome activation the severity of the pathologies was 
attenuated and the clinical outcomes ameliorated (Coll et al., 2015; Ismael et 
al., 2018). To date, only very few compounds targeting NLRP3 or CAS-1 have 
entered clinical trials. RP-1127, an NLRP3 inflammasome inhibitor (Lamkanfi 
et al., 2009) has been tested in a clinical trial for stroke (EudraCT 2017-
004854-41) and traumatic brain injury (ClinicalTrials.gov: NCT01454154), after 
positively evaluated pilot studies (Sheth et al., 2014a, b).

NLRP3 is not the only inflammasome to be associated with mitochondria, 
continuous findings indicate that NLRC4 (NLR family CARD Domain Containing 
4), AIM2 (Interferon-inducible protein AIM2), and NLRP1 (NLR Family Pyrin 
Domain Containing 1) are also linked to mitochondrial dysfunction and appear 
to play a key role in neuronal diseases. High expression levels of NLRC4 and 
AIM2 have been observed in neuronal tissue of sporadic AD patients and 
mutant SOD1 transgenic animals, respectively (Liu and Chan, 2014; Johann et 
al., 2015; Gugliandolo et al., 2018). Elevated levels of NLRP1 have been found 
in traumatic patients with brain injury and in mice with spinal cord injury 
(de Rivero Vaccari et al., 2008; Adamczak et al., 2012; Wallisch et al., 2017). 
NLRP1 was significantly increased in the brain of AD patients, its genetic 
variants are associated with the risk of AD, when genetically modulated in 
an AD mouse model the cognitive impairments and the neuronal pyroptosis 
were attenuated (Pontillo et al., 2012; Tan et al., 2014; Kaushal et al., 2015). 

In contraposition to inflammasomes, the mitochondria-located innate 
immune sensor NLRX1 inhibits different pro-inflammatory pathways, such as 
the NF-κB signaling, to control the microglial activation and the generation of 
neurotoxic astrocytes, thus preventing the neuroinflammation and the death 
of neurons and oligodendrocytes (Xia et al., 2011; Imbeault et al., 2014; 

Killackey et al., 2019). NLRX1 mediated the protection against EAE in a murine 
model of MS, repressing the inflammation induced by macrophages and 
microglia (Eitas et al., 2014). The protective role of this NLR receptor in the 
progression of the disease is supported by the several mutations identified in 
MS patients, which correlate with an exacerbated clinical outcome (Chen et 
al., 2021).

The compartmentalization response of neuroinflammation associated with 
mitochondria is thus mainly correlated to the release of mtDAMPs and by 
inflammasomes activation in the innate immune brain cells, where the high 
levels of inflammatory cytokines secreted condition the cell survivor of 
resident cells (Heneka et al., 2018). The quantity of cytokines released from 
activated microglia increases about six times more in the AD brain, and a 
similar secretion has been quantified also in other ND (Griffin et al., 1989; 
Hunot et al., 1999). However, in brain cells, the expression of receptors 
for IL-1β and IL-18 is highly related to the cognitive, learning, and memory 
processes. This suggests that a fine regulation is necessary as the therapeutic 
target (Tsai, 2017). Treatments with IL-1β neutralizing antibodies or with IL-1 
receptor antagonists, such as anakinra, improved the cognitive and motor 
outcomes in traumatic brain injury and the ALS mouse model (Clausen et al., 
2009; Bertani et al., 2017). Surprisingly, anakinra did not show improvements 
in human ALS patients and the deletion of IL-18 did not protect the AD mice 
from neuropathy but developed a lethal seizure disorder that was reversed 
only by anticonvulsants, to confirm the complexity of the physiopathology 
associated with neuroinflammation (Maier et al., 2015; Tzeng et al., 2018).

The Role of Apoptosis in Neuronal Disorders
Programmed cell death describes a series of different genetically encoded 
mechanisms that are responsible for the target and destruction of irreversibly 
damaged cells. These cellular processes are fundamental to human tissue 
development and are critical for the correct maintenance of organismal 
homeostasis. Historically, and accordingly, to the macroscopic morphological 
alterations, programmed cell death was classified into three isoforms: type 
I cell death or apoptosis, type II cell death or autophagy, and type III cell 
death or necrosis (Galluzzi et al., 2007). To date, this nomenclature has been 
extended and there are at least 20 distinct cell death types (Galluzzi et al., 
2018). Nevertheless, apoptosis remains the most studied and relevant cell 
death for both physiological and pathological conditions. In the following 
sections, we will give a general overview of the apoptotic process and 
describe its involvement in NDs.

A brief overview of the apoptotic process
Mitochondria have a recognized role in regulating cell apoptosis being 
the leading actors of the apoptotic intrinsic cascade (Galluzzi et al., 2016; 
Patergnani et al., 2020b). The loss of membrane integrity induces the release 
of IMS-resident pro-apoptotic factors into the cytosol, such as the second 
mitochondria-derived activator of caspase/direct inhibitor of apoptosis-
binding protein with low pI (Smac/DIABLO) and cyt-c (Rasola and Bernardi, 
2011; Giorgi et al., 2012). Once in the cytosol, cyt-c interacting with CAS-
9 and the cofactor apoptosis protease-activating factor (APAF) forms the 
“apoptosome” that in turn activates the effector caspases, triggering the 
apoptotic machinery (Bonora et al., 2014a). In this context, Ca2+ has a pivotal 
role. Within the cell, the average Ca2+ concentration is very low. However, 
a series of so-called intracellular Ca2+ stores, including ER, present high 
concentrations of Ca2+. It has been demonstrated that following ER stress, 
oxidative damage, and/or chemotherapy promote a massive Ca2+-release 
from the ER into the cytoplasm that is sufficient to activate a class of cysteine 
proteases (calpains), which can trigger the caspase activation. In addition, 
the close juxtaposition between ER and mitochondria potentiates the Ca2+-
transfer from ER to the mitochondrial matrix to promote mitochondrial 
permeability transition, mitochondrial swelling, thereby activating the 
apoptotic cascade (Giorgi et al., 2018). 

Apoptosis and neurodegeneration
Apoptosis is a key process for the normal development of the brain and the 
spinal cord as well as it is crucial for the construction of an efficient neuronal 
network. The main components of the apoptotic machinery have been found 
to be crucial for the regulation of neuronal cell death. APAF1–/– mice die 
before birth, due to impaired apoptosis, as demonstrated by the presence 
of enlarged brains (Cecconi et al., 1998). Downregulation of the anti-
apoptotic gene BCL-XL results to be lethal during gestation (Los et al., 2002). 
The analysis of embryos revealed excessive apoptotic levels in immature 
neurons of the spinal cord, brain, and dorsal root ganglia. In line with this, 
BAX deficiency provokes excessive neurogenesis and consequent formation 
of medulloblastoma (Garcia et al., 2015). Meanwhile, these findings 
highlight the importance of apoptosis during neural developments, several 
other studies demonstrate that excessive apoptosis has the main role in 
neurodegeneration, due to the massive presence of mitochondrial dysfunction 
among the cells of the nervous system (Figure 3). The characteristics of 
motor symptoms, occurring in PD, mainly come from dopamine depletion 
caused by degeneration of the dopaminergic neurons in substantia nigra pars 
compacta. Apoptosis has been implicated as the predominant mechanism of 
neuronal death in PD, as indicated by postmortem studies in dopaminergic 
neurons of PD patients (Hartmann et al., 2000; Mogi et al., 2000; Tatton, 
2000). Apoptosome formation occurs in the substantia nigra and locus 
ceruleus in PD brains (Kawamoto et al., 2014). Among pro-apoptotic proteins 
involved in PD, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
mouse model, BAX has been shown to exert a pivotal role in substantia 
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nigra pars compacta dopaminergic neuronal death, likely by acting in injured 
neurons before the onset of irreversible cell death events (Vila et al., 2001). 
At the demonstration, MPTP injection increases the expression of BAX 
and decreases the BAX-BCL2 ratio, thereby provoking apoptotic neuronal 
death. In line with this, BAX-deficient mice are resistant to MPTP-induced 
neuronal death (Vila et al., 2001). Furthermore, pre-administration of BAX-
inhibiting peptides decreased the loss of the nigral dopaminergic neurons 
in the 6-hydroxydopamine-induced PD rat model and targeting BAX, by the 
microRNA-216a, inhibited neuronal apoptosis in a cellular PD model (Ma et 
al., 2016; Yang et al., 2020). Interestingly, the α-syn accumulation and cyt-c 
could develop a deleterious loop in the surviving dopaminergic neurons. Cyt-c 
contributed to α-syn radical formation and oligomerization as demonstrated 
in a pesticide-induced model of PD (Kumar et al., 2016). Indeed, co-exposure 
to pesticides, such as maneb and paraquat, induced the release of cyt-c into 
the cytosol. Here, cyt-c co-localizes with α-syn to induce its oligomerization 
and the protein radical formation in the midbrain of mice treated with maneb 
and paraquat (Kumar et al., 2016). Furthermore, it has been shown that 
α-syn localizes on the mitochondrial surface, where induces oxidative stress 
causing the release of cyt-c triggering mitochondria-mediated apoptosis 
(Figure 3) (Parihar et al., 2008). Therapeutic strategies focused on targeting 
antioxidant and apoptotic pathways are gaining increasing importance in 
PD. For example, in the PD model 6-OHDA-induced apoptosis, the addition 
of the flavone tricetin provided neuroprotection by down-regulating BAX, 
up-regulating the anti-apoptotic protein BCL2, mitigating mitochondrial 
membrane potential loss, and protecting cells from mitochondria-dependent 
apoptotic pathway (Ren et al., 2019). In a PD rat model, administration of 
glial cell line-derived neurotrophic factor protected against neural apoptosis 
by inducing AKT and glycogen synthase kinase 3 beta phosphorylation. 
Consistently, when selective AKT inhibitors (LY294002 and triciribine) were 
used, the protective effect of glial cell line-derived neurotrophic factor was 
abolished (Yue et al., 2017). Noteworthy, in rotenone-induced rat models 
of PD, α-bisabolol, a dietary bioactive phytochemical has been found to 
attenuate dopaminergic neurodegeneration also by increasing the BAX/BCL2 
protein expression levels and reducing the expression of cleaved CAS-3 and 
-9 in the striatum (Javed et al., 2020). Likewise, piperlongumine, an alkaloid 
isolated from the long pepper Piper longum, exerts an anti-apoptotic role by 
increasing BCL2 phosphorylation, thus stabilizing the BAX/BCL2 heterodimer 
and consequently inhibiting apoptosis (Liu et al., 2018). Like in PD, in AD 

the Aβ oligomers and tau inclusions have been considered to have a pivotal 
role in the pathogenesis of the disease, leading to neuronal loss, the major 
cause of neurodegeneration (DeTure and Dickson, 2019). Mitochondrial 
accumulation of Aβ and tau likely contributes to mitochondrial dysfunction in 
AD, and it is strictly connected to the mitochondrial apoptosis pathway (Figure 
3). Indeed, AD patients’ brains are characterized by excessive oxidative stress, 
which is sufficient to activate MAPK family members, in particular p38 kinase. 
Once activated, p38 kinase induces BAX phosphorylation and its translocation 
to mitochondria where promotes the apoptotic process (Henderson et al., 
2017). 

Furthermore, the intrinsic apoptotic pathway activation has been reported 
to play the main role in Aβ-42-induced apoptosis (Islam et al., 2017). In this 
case, Aβ-42 enters the cells by forming a channel-like structure on the cell 
surface. Here, it provokes mitochondrial damage with consequent cyt-c 
release and activation of the apoptotic process. Interestingly, Aβ-42 was not 
able to induce apoptotic cells throughout the activation of the death-inducing 
signaling complex. It is well established that CAS-3 functionally links Aβ 
deposition and neurofibrillary tangles in AD. Particularly, both the extracellular 
Aβ deposits and the intracellular Aβ have been reported to activate caspases, 
and tau protein CAS-3-mediated cleavage has been reported to play an 
important role in both tau aggregation and disease (Glabe, 2001; Gamblin et 
al., 2003). The cognitive decline has been also correlated with increased levels 
of caspase activity and tau truncated by CAS-3 in the forebrain of aged mice. 
In addition, in vitro experiments in human neuroblastoma cells demonstrated 
that the tau cleavage is dependent on CAS-3 (Means et al., 2016). Coherently, 
the inhibition of caspases prevented the proteolytic cleavage of tau and 
the associated formation of neurofibrillary tangles involving the apoptosis 
pathway in both AD neuronal cell death and cognitive impairment (Means 
et al., 2016). Besides, the role in bioenergetics control and ROS production, 
mitochondria are important players in intracellular Ca2+ homeostasis 
(Marchi et al., 2018). Excessive Ca2+-uptake into mitochondria leads to 
the mitochondrial Ca2+-overload resulting in the opening of mitochondrial 
permeability transition pore with induction of the apoptosis (Bonora et al., 
2017) and neuronal death (Kalani et al., 2018). In vitro studies reported that 
Aβ oligomers induce Ca2+ transfer to mitochondria from ER and cytosol (Calvo-
Rodriguez et al., 2016). In line with the in vitro experiments, it has been 
reported that increased mitochondrial Ca2+ levels were associated with plaque 
deposition and neuronal death in a transgenic mouse model of cerebral 
β-amyloidosis. Consistently, Ru360 a selective blocker of mitochondrial 
Ca2+ uniporter reduced the neuronal Aβ-accumulation, indicating that 
mitochondrial Ca2+uniporter is required for Aβ-driven mitochondrial Ca2+-
uptake (Calvo-Rodriguez et al., 2020). Very recently, it has been also reported 
an important role of both exogenous and endogenous tau in intracellular 
Ca2+ homeostasis. Particularly, tau inhibits mitochondrial Ca2+ efflux by 
blocking the activity of the mitochondrial Na+/Ca2+ exchanger in primary 
cortical co-cultures of neurons and astrocytes. This provokes depolarization 
of mitochondria and makes neurons vulnerable to Ca2+-overload-induced 
apoptotic cell death (Britti et al., 2020). Interestingly, similar events were 
also found in human iPSC-derived neurons bearing a mutation in the gene 
encoding tau, the microtubule-associated protein tau (Britti et al., 2020). 
MS is a debilitating disease characterized by inflammation, loss of myelin 
sheath that causes axonal degeneration, which makes axons vulnerable to a 
variety of insults and where the oligodendrocytes are the main targets (Lublin 
et al., 2014; Patergnani et al., 2017) (Ghasemi et al., 2017). The apoptosis 
of oligodendrocytes has a critical role in the pathogenesis of MS; indeed, 
caspase-mediated death of oligodendrocytes is crucial for demyelination 
(Caprariello et al., 2012). One of the principal apoptotic pathways involved in 
the regulation of immune response is the fas cell surface death receptor (FAS)/
FAS ligand system (Volpe et al., 2016). This pathway leads to the activation of 
CAS-8, which truncates the BH3 (BCL2 homology 3)-only protein BID (BH3-
interacting domain death agonist) into truncated (t)BID (Figure 3). Following 
the translocation of tBID to mitochondria, this proapoptotic protein induces 
oligomerization of BAK, thus promoting cyt-c release and mitochondrial 
apoptotic pathway (Korsmeyer et al., 2000). Recently, it has been found 
that GSTA4 restricts apoptosis of oligodendrocytes via modulation of the 
mitochondria-associated FAS-CAS-8-BID-axis. Importantly, it has been reported 
that GSTA4 can promote remyelination and improve clinical symptoms of MS-
like disease in rodents, opening a new perspective for future reparative MS 
therapies (Carlstrom et al., 2020). Further, it has been demonstrated that 
another way to control brain apoptosis is through metformin administration. 
Indeed, metformin reduces the motor impairment in the CPZ-demyelinating 
mouse model, improves the amounts of myelinating oligodendrocyte and 
the ADP/ATP ratio, by regulating the AMPK/MTOR pathway. Furthermore, 
metformin reduces oxidative stress and improves antioxidant defense. This 
results in a downregulation of the mitochondrial cascade of apoptosis, as 
demonstrated by a decreased BAX/BCL2 ratio and CAS-3 activation (Sanadgol 
et al., 2020). Again, matrine, a tetracyclic quinolizine alkaloid derived from the 
herb radix sophorae flavescentis, has been shown to ameliorate clinical signs 
in the MS animal models reducing the expression of CAS-3 and cyt-c (Wang et 
al., 2019b). Thus, targeting the apoptotic process might serve as a therapeutic 
strategy for improving MS therapy.

Epilepsy is another neurological disorder, which stands out for apoptosis-
induced cell death. Seizure episodes are the main features of this neurological 
disorder characterized by transient and recurrent symptoms due to abnormal 
and simultaneous neuronal activity of a neuronal cell population in the 
brain (Brodie et al., 2018). The excessive stimulation of glutamate receptors 
results in neurotoxicity, leading to mitochondrial Ca2+-overload, in a process 
denominated excitotoxicity, which leads ultimately to apoptotic neuronal 

Figure 3 ｜ Schematic representation of the involvement of apoptosis in neurological 
disorders. 
Neurological disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), 
multiple sclerosis (MS), and epilepsy are characterized by a common feature the 
apoptosis. In all these diseases, intrinsic apoptosis ultimately leads to cell death by the 
release of mitochondrial content to the cytoplasm involving BAK/BAX and mitochondrial 
permeability transition pore (mPTP). These events promote the release of Cytochrome 
c and the formation of apoptosome inducing the activation of cell death effectors like 
Caspase-3. Events leading to cell death vary among the different pathologies. In AD, 
the apoptotic pathway is linked to the mitochondrial accumulation of Aβ-oligomers 
and tau inclusions which leads to mitochondrial dysfunction allowing the activation of 
the cell death pathway. In PD, the increase of oxidative stress induces the formation 
of α-synuclein (α-syn) radical promoting the release of cytochrome C and triggering 
mitochondria-mediated apoptosis. In MS, activated immune cells, through the release of 
inflammatory products, promote the activation of caspase-8 which in turn promotes the 
truncation of BID into t-BID. t-BID represents the point of connection between extrinsic 
and intrinsic pathways promoting BAK/BAX pore formation and ultimately Caspase-3 
activation. In epilepsy, the apoptotic pathway is induced by the excessive stimulation of 
glutamate receptors. This event results in mitochondrial Ca2+-overload and ultimately 
apoptotic neuronal cell death. The involvement of apoptosis in neurological disorders 
is widely described in the main text. Aβ: Amyloid-beta; BAK: B-cell lymphoma 2 (BCL2)-
like protein 4; BAX: B-cell lymphoma 2 (BCL2) associated X, apoptosis regulator; BCL2: 
B-cell lymphoma 2; Ca2+: calcium; FAS: fas cell surface death receptor; FAS-L: ligand of 
fas cell surface death receptor; MCU: mitochondrial Ca2+ uniporter; mPTP: mitochondrial 
permeability transition pore; tBID: truncated BH3-interacting domain death agonist; 
TOM: translocons of the outer membrane; α-syn: alpha-synuclein. Created with 
BioRender.com.
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cell death (Figure 3) (Henshall, 2007). Several studies emphasize the role 
of apoptosis in seizures-induced cell death increased levels of apoptotic 
markers were observed in epileptic patients. In this group, it was observed 
augmented levels of CAS-3 and a direct correlation with pro-inflammatory 
elements, such as IL-1β, IL-6, and CAS-1 (Kegler et al., 2020). In a rat model 
of kainic acid (KA) induced-epilepsy, after 48 hours of epileptic seizure onset, 
the number of apoptotic cells in the neocortex increased (Li et al., 2018a). It 
has been demonstrated that KA-induced epilepsy determines the release of 
APAF1 into the cytosol to activate the apoptotic cascade via CAS-9 (Henshall, 
2007). Furthermore, in the same model, an important role was also accounted 
for BAD and BAX. Following seizure-induced brain injury, BAD displaces the 
existing interaction between the anti-apoptotic protein BCL-XL and the pro-
apoptotic BAX, which the last one translocates to the mitochondria to promote 
cyt-c release and activation of the apoptotic cascade (Henshall et al., 2001, 
2002). In line with this, sodium valproate treatment significantly reduced 
neuronal apoptosis, in a KA-induced rat model, by reducing CAS-3 activity 
and BAX expression and increasing BCL2 levels (Li et al., 2018b). Valepotriate, 
isolated from Valeriana jatamansi, revealed anti-epileptic effects, in addition to 
increasing the expression of GABAA, allowing to increased BCL2 and reduced 
CAS-3 expression levels (Wu et al., 2017). Similarly, vitamin D exhibited 
neuroprotective effects in hippocampal neurons by reducing BAX and CAS-3 
levels in KA- and pentylenetetrazol-induced seizures in rats (Sahin et al., 2019). 

Conclusions 
Disruption of mitochondrial homeostasis and subsequent mitochondrial 
dysfunction plays a key role in the pathophysiology of ND. Numerous quality 
control mechanisms coexist within mitochondria of neural cells to detect 
and repair defects affecting mitochondrial status and functioning before 
the point of inescapable cell death is reached. Despite distinct clinical and 
pathological features, all ND are characterized by alterations of most of these 
lines of defense and present common harmful cellular events, in particular 
(i) presence of misfolded and/or aggregated proteins; (ii) anomalies in 
mitochondrial dynamics; (iii) impairment of autophagy; (iv) mitochondria-
driven neuroinflammation; and (v) aberrant apoptosis. Targeting these 
mitochondria-related processes remains in part complicated, they could be 
used as a therapeutic target but more needs to be done. To date, we still 
do not completely understand the exact contribution of the mitochondrial 
compartment during the forming of misfolded protein aggregates: do they 
represent the cause or the consequence of these uncontrolled accumulations? 
Similarly, mitochondrial abnormalities are widely described in the brains of 
ND-affected persons. However, it is difficult to obtain live monitoring of the 
mitochondrial dynamics during the progression of the disease. 

Several compounds have been described to improve or reduce their activity, 
but they possess a wide spectrum of side effects. Finally, UPRmt and mito-
inflammation represent a relative “young-discovered” mechanism that 
must be explored in all its facets in the ND context. Further elucidations of 
ND molecular mechanism, advances in technologies for rapid and constant 
monitoring of the mitochondrial impairment, major progresses in translating 
findings from cellular and animal models to humans, and development of 
specific compounds able to deactivate the mitochondrial imbalances will be a 
fundamental support to improve the quality of life of people affected by ND.
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